Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201001269 | DOI Listing |
Org Lett
January 2025
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211800, China.
A palladium-catalyzed tandem reaction of 1-(2-iodophenyl)-3-arylprop-2-yn-1-ones and 1-(2-azidophenyl)propargyl ethers is developed to provide the rapid construction of a fused polycyclic indenone-indole scaffold under mild conditions. The reaction proceeds via a highly ordered process involving Sonogashira coupling, propargyl-allenyl isomerization, allene-azide cycloaddition, denitrogenation, and diradical coupling. The proposed reaction mechanism is supported by experimental and computational studies.
View Article and Find Full Text PDFMolecules
December 2024
Institute of Organic and Analytical Chemistry (ICOA UMR 7311), CNRS, University of Orleans, F-45067 Orléans, France.
The emergence of RNA viruses driven by global population growth and international trade highlights the urgent need for effective antiviral agents that can inhibit viral replication. Nucleoside analogs, which mimic natural nucleotides, have shown promise in targeting RNA-dependent RNA polymerases (RdRps). Starting from protected 5-iodouridine, we report the synthesis of -substituted-(1,3-diyne)-uridines nucleosides and their phosphoramidate prodrugs.
View Article and Find Full Text PDFOrg Lett
December 2024
Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany.
Herein, we developed a mild and efficient palladium-catalyzed carbonylative Sonogashira coupling of aryl thianthrenium salts with aliphatic alkynes and benzyl acetylene toward alkynones and furanones. Various desired products were prepared in good yields with broad functional group tolerance including the bromide group. In the case of using benzyl acetylene, the corresponding furanones can be obtained in good yields under the same conditions with two molecules of CO inserted.
View Article and Find Full Text PDFChemMedChem
October 2024
Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
Based on high binding affinity of truncated 2-hexynyl-4'-thioadenosine (3 a) at both A adenosine receptor (AR) and A AR, we explored structure-activity relationship (SAR) of the C2-substitution by altering chain length of the 2-hexynyl moiety, thereby evaluating the hydrophobic pocket size. A series of truncated N-substituted 4'-thioadenosine derivatives with C2-alkynyl substitution were successfully synthesized from D-mannose, using a palladium-catalyzed Sonogashira coupling reaction as the key step, whose structures were confirmed by the X-ray crystal structure of 4 h. As the size of the alkynyl group at the C2-position increased, the binding affinity improved; however, when the substituted group was larger than hexynyl, the binding affinity decreased.
View Article and Find Full Text PDFDalton Trans
September 2024
Department of Chemistry, Indian Institute of Technology Indore (M.P.), 453552, India.
A set of ferrocenyl-functionalized perylenediimide (PDI) compounds and their 1,1,4,4-tetracyanobuta-1,3-diene (TCBD) derivatives 1-5 were designed and synthesized using palladium-catalyzed Sonogashira cross-coupling, followed by a thermally activated [2 + 2] cycloaddition-retroelectrocyclization [CA-RE] reaction with a 1,1,2,2-tetracyanoethylene (TCNE) acceptor in good yields. The TCBD group works as an acceptor, whereas the ferrocenyl group acts as a donor at the central PDI core. The effects of varying the number of ferrocenyl and TCNE groups on the photophysical, thermal, electrochemical, and spectroelectrochemical properties were studied.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!