High-speed spatial atomic-layer deposition of aluminum oxide layers for solar cell passivation.

Adv Mater

TNO Science & Industry, PO Box 6235, 5600 HE Eindhoven, The Netherlands.

Published: August 2010

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.201000766DOI Listing

Publication Analysis

Top Keywords

high-speed spatial
4
spatial atomic-layer
4
atomic-layer deposition
4
deposition aluminum
4
aluminum oxide
4
oxide layers
4
layers solar
4
solar cell
4
cell passivation
4
high-speed
1

Similar Publications

Three-dimensional characterization of nanoporous membranes by capillary filling using high speed interferometry.

Rev Sci Instrum

January 2025

Dpto. de Física, Facultad de Ingeniería Química, Universidad Nacional del Litoral, S3000 Santa Fe, Argentina and Instituto de Física del Litoral, Santa Fe S3000, Argentina.

A high-speed interferometric system was developed to analyze nanostructured porous silicon (PS) membranes by measuring reflectance variations during capillary filling from both sides. A high-speed camera was employed to capture the reflectance evolution of the entire sample area with the necessary temporal resolution, providing quantitative information on filling dynamics. By integrating these data with a simple fluid dynamic model, it is possible to examine the internal structure of the membranes and determine the effective pore radii profiles along their thickness.

View Article and Find Full Text PDF

As the demand for high-speed, low-latency communication continues to grow, free-space optical (FSO) communication has gained prominence as a promising solution for supporting the next generation of wireless networks, especially in the context of the 5G and beyond era. It offers high-speed, low-latency data transmission over long distances without the need for a physical infrastructure. However, the deployment of FSO systems faces significant challenges, such as atmospheric turbulence, weather-induced signal degradation, and alignment issues, all of which can impair performance.

View Article and Find Full Text PDF

Introduction: Previous research usually focused on high-frequency crash clusters (surrounded by high-frequency crashes), which overlooked outlier locations where high-frequency crashes were surrounded by low-frequency crashes. Neglecting spatiotemporal outliers might overlook critical factors for safety improvements.

Methods: Using pedestrian-vehicle crash data in North Carolina from 2007 to 2019, this study proposes an enhanced spatiotemporal analysis framework (combined with Approximate Nearest Neighbour and the Global Moran I index) to distinguish spatiotemporal crash outliers from aggregated/dispersed patterns.

View Article and Find Full Text PDF

Visualization of Mechanical Force Regulation of Exosome Secretion Using High Time-Spatial Resolution Imaging.

Anal Chem

January 2025

State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China.

Article Synopsis
  • Exosomes are small vesicles that help cells communicate and are influenced by the tumor environment, with mechanical forces potentially enhancing their release.
  • Researchers used advanced imaging techniques to study how mechanical forces affect exosome release in real time, observing that these forces lead to more exosome release through the fusion of multivesicular bodies with the cell membrane.
  • They identified that changes in the actin structure of cells, triggered by mechanical forces, are key to this process, paving the way for new strategies to address disease-related exosomes.
View Article and Find Full Text PDF

Spatially ordered recruitment of fast muscles in accordance with movement strengths in larval zebrafish.

Zoological Lett

January 2025

National Institutes of Natural Sciences, Exploratory Research Center On Life and Living Systems (ExCELLS), National Institute for Basic Biology, Okazaki, Aichi, 444-8787, Japan.

In vertebrates, skeletal muscle comprises fast and slow fibers. Slow and fast muscle cells in fish are spatially segregated; slow muscle cells are located only in a superficial region, and comprise a small fraction of the total muscle cell mass. Slow muscles support low-speed, low-force movements, while fast muscles are responsible for high-speed, high-force movements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!