A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multilineage differentiation potential of cells isolated from the human amniotic membrane. | LitMetric

The human amniotic membrane (HAM) contains two cell types from different embryological origins. Human amnion epithelial cells (hAECs) are derived from the embryonic ectoderm, while human amnion mesenchymal stromal cells (hAMSCs) are derived from the embryonic mesoderm. In this study, we localized, isolated, quantified and phenotypically characterized HAM-derived cells and analysed their in vitro differentiation potential towards mesodermal cell lineages. Human amnion-derived cells were isolated and characterized by flow cytometry. Immunohistochemistry and quantitative real-time reverse transcription-polymerase chain reaction studies were performed for the analysis of multipotentiality. Immunophenotypic characterization of both cell types demonstrated the presence of the common, well-defined human mesenchymal stem cell (MSC) markers (CD90, CD44, CD73, CD166, CD105, CD29), as well as the embryonic stem-cell markers SSEA-4 and STRO-1. Phenotypes of both cell populations were maintained from passages P0 to P9. The assessment of multilineage potential demonstrated that the hAMSCs showed greater adipogenic and chondrogenic potential. Both populations had the ability to retain their capacity for differentiation during culture passages from P0 to P4. Our data demonstrate the successful localization and isolation of hAMSCs and hAECs from the HAM. Both cell populations possessed similar immunophenotype. However, they differed in cell yield and multipotential for differentiation into the major mesodermal lineages. Our functional differentiation studies demonstrated that hAMSCs possess a much greater mesodermal differentiation capacity than hAECs. These considerations will be important for use of these cells for cell therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcb.22769DOI Listing

Publication Analysis

Top Keywords

differentiation potential
8
cells isolated
8
human amniotic
8
amniotic membrane
8
cell
8
ham cell
8
cell types
8
human amnion
8
derived embryonic
8
cell populations
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!