Background: Preferential bony metastasis of human prostate cancer (PCa) cells contributes to disease mortality and morbidity. Local factors in bone stromal extracellular matrix microenvironment affect tumor growth through paracrine interactions between tumor and stromal cells.

Methods: Using co-culture and medium transfer, we used several methods to assess interactions between PCa and bone stromal cells using three PCa cell lines: PC3, LNCaP, and the LNCaP derivative, C4-2B.

Results: Co-culture of LNCaP and C4-2B cells with bone marrow stromal cell lines, HS27a and HS5, decreased cell number, as did culture with conditioned medium (CM) harvested from these two cell lines suggesting a soluble paracrine factor was responsible. PC3 cell growth was unaffected. CM harvested from bone stromal cell lines triggered apoptosis in LNCaP and C4-2B cell lines, but not in PC3 cells. Surviving C4-2B cells grown in bone stromal cell CM over several days were growth arrested, suggesting presence of a growth inhibitor. Apoptosis induced by CM was dose-dependent. Flow cytometry demonstrated that over a 5-day culture period in stromal cell CM, LNCaP, and C4-2B cell lines, but not PC3 cells, underwent greater apoptosis than parallel cultures in SF medium. The LNCaP and C4-2B cells showed morphology and biomarker expression consistent with transdifferentiation towards a neuroendocrine phenotype after exposure to stromal cell CM.

Conclusions: The reactive bone stromal microenvironment initially is hostile to PCa cells producing widespread apoptosis. Activation of transdifferentiation in a subset of apoptotic resistant cells may support phenotypic adaptation during disease progression in bone, eventually favoring lethal disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2972389PMC
http://dx.doi.org/10.1002/pros.21231DOI Listing

Publication Analysis

Top Keywords

cell lines
24
bone stromal
20
stromal cell
20
lncap c4-2b
16
lines pc3
12
c4-2b cells
12
cells
11
cell
11
stromal
10
bone
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!