High inflammatory AIRmax mice homozygous for Slc11a1 R and S alleles were produced. AIRmax(SS) mice showed faster ear tissue regeneration than AIRmax(RR) mice, suggesting that the S allele favored tissue restoration. Here, we investigated the gene expression profiles and the inflammatory reactions of AIRmax(RR) and AIRmax(SS) mice during the initial phase of ear tissue regeneration. We observed superior levels of analysis of wound myeloperoxidase and edema in AIRmax(SS) mice, although similar cell influx was verified in both lines. Of the genes, 794 were up- and 674 down-regulated in AIRmax(RR), while 735 genes were found to be up- and 1616 down-regulated in AIRmax(SS) mice 48 h after punch. Both mouse lines showed significant over-represented genes related to cell proliferation; however AIRmax(SS) displayed up-regulation of inflammatory response genes. Quantitative PCR experiments showed higher expressions of Tgfb1, Dap12 and Trem1 genes in AIRmax(SS) mice. These results indicate that Slc11a1 gene modulated the early inflammatory events of ear tissue regeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10753-010-9235-yDOI Listing

Publication Analysis

Top Keywords

airmaxss mice
20
ear tissue
16
tissue regeneration
16
early inflammatory
8
inflammatory events
8
events ear
8
mice
8
slc11a1 alleles
8
airmaxss
6
inflammatory
5

Similar Publications

AIRmax (maximal inflammation) and AIRmin (minimal inflammation) mice show distinct susceptibilities to pristane-induced arthritis (PIA). The Slc11a1 gene, which regulates macrophage and neutrophil activity, is involved in this infirmity. AIRmax (SS) mice homozygous for the non-functional Slc11a1 S (gly169asp) allele obtained by genotype-assisted crosses from AIRmax and AIRmin mice are more susceptible than mice homozygous for the Slc11a1 resistant (R) allele.

View Article and Find Full Text PDF

High inflammatory AIRmax mice homozygous for Slc11a1 R and S alleles were produced. AIRmax(SS) mice showed faster ear tissue regeneration than AIRmax(RR) mice, suggesting that the S allele favored tissue restoration. Here, we investigated the gene expression profiles and the inflammatory reactions of AIRmax(RR) and AIRmax(SS) mice during the initial phase of ear tissue regeneration.

View Article and Find Full Text PDF

Mice selected for the maximum acute inflammatory reaction (AIRmax) are highly susceptible to pristane-induced arthritis (PIA), whereas mice selected for the minimum response (AIRmin) are resistant. These lines show distinct patterns of leukocyte infiltration and R and S allele frequency disequilibrium of the solute carrier family 11a member 1 (Slc11a1) gene. In order to study the interactions of the Slc11a1 R and S alleles with the inflammation modulating Quantitative Trait Loci (QTL) during PIA development, homozygous AIRmax(RR), AIRmax(SS), AIRmin(RR) and AIRmin(SS) lines were produced by genotype-assisted breedings.

View Article and Find Full Text PDF

Two lines of mice selected to produce maximal (AIRmax) or minimal (AIRmin) acute inflammatory reactions (AIR) differ in their susceptibility to infection by Salmonella enterica serotype Typhimurium (S. Typhimurium). The LD(50) for AIRmax mice is 1000 times higher than that observed for AIRmin mice, and higher frequencies of Slc11a1 alleles (known to confer either resistance (R) or high susceptibility (S) to S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!