Astringency is thought to result from the interaction between salivary proline-rich proteins (PRP) that belong to the intrinsically unstructured protein group (IUP), and tannins, which are phenolic compounds. IUPs have the ability to bind several and/or different targets. At the same time, tannins have different chemical features reported to contribute to the sensation of astringency. The ability of both electrospray ionization mass spectrometry and tandem mass spectrometry to investigate the noncovalent interaction occurring between a human salivary PRP, IB5, and a model tannin, epigallocatechin 3-O-gallate (EgCG), has been reported. Herein, we extend this method to study the effect of tannin chemical features on their interaction with IB5. We used five model tannins, epigallocatechin (EgC), epicatechin 3-O-gallate (ECG), epigallocatechin 3-O-gallate (EgCG), procyanidin dimer B2 and B2 3'-O-gallate, which cover the main tannin chemical features: presence of a gallate moiety (galloylation), the degree of polymerization, and the degree of B ring hydroxylation. We show the ability of IB5 to bind these tannins. We report differences in stoichiometries and in stability of the IB5•1 tannin complexes. These results demonstrate the main role of hydroxyl groups in these interactions and show the involvement of hydrogen bonds. Finally, these results are in line with sensory analysis, by Vidal et al. (J Sci Food Agric 83:564-573, 2003) pointing out that the chain length and the level of galloylation are the main factors affecting astringency perception.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00216-010-3997-9 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Center of Translational Oral Research (TOR), Department of Clinical Dentistry, University of Bergen, Bergen 5009, Norway.
Wood-based nanocellulose is emerging as a promising nanomaterial in the field of tissue engineering due to its unique properties and versatile applications. Previously, we used TEMPO-mediated oxidation (TO) and carboxymethylation (CM) as chemical pretreatments prior to mechanical fibrillation of wood-based cellulose nanofibrils (CNFs) to produce scaffolds with different surface chemistries. The aim of the current study was to evaluate the effects of these chemical pretreatments on serum protein adsorption on 2D and 3D configurations of TO-CNF and CM-CNF and then to investigate their effects on cell adhesion, spreading, inflammatory mediator production , and the development of foreign body reaction (FBR) .
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
January 2025
Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China.
A novel ionic liquid MALDI matrix, 3-aminoquinoline/2',4',6'-trihydroxyacetophenone monohydrate (3-AQ/THAP), was developed for the rapid qualitative and quantitative detection of miRNA from biological samples. Compared to the traditional matrix 2,5-dihydroxybenzoic acid (DHB) and previously reported oligonucleotide-specific matrices, such as 3-aminopicolinic acid (3-APA), 3-hydroxypicolinic acid (3-HPA), and 6-aza-2-thiothymine (ATT), the 3-AQ/THAP matrix offers several advantages. It produces fewer alkali metal adduct peaks, exhibits higher sensitivity, and ensures better spot-to-spot repeatability.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510050, China.
Chromobox 2 (CBX2), a crucial component of the polycomb repressive complex (PRC), has been implicated in the development of various human cancers. However, its role in the regulation of tumor immunogenicity and immune evasion remains inadequately understood. In this study, we found that ablation of CBX2 led to tumor growth inhibition, activation of the tumor immune microenvironment, and enhanced therapeutic efficacy of anti-PD1 or adoptive T cell therapies by using murine syngeneic tumor models.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America.
Aflatoxin B1 (AFB1) is a class 1 carcinogen and mycotoxin known to contribute to the development of hepatocellular carcinoma (HCC), growth impairment, altered immune system modulation, and malnutrition. AFB1 is synthesized by Aspergillus flavus and is known to widely contaminate foodstuffs, particularly maize, wheat, and groundnuts. The mechanism in which AFB1 causes genetic mutations has been well studied, however its metabolomic effects remained largely unknown.
View Article and Find Full Text PDFAnal Chem
January 2025
Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993, United States.
Non-targeted analysis (NTA) using high-resolution mass spectrometry without defined chemical targets has the potential to expand and improve chemical monitoring in many fields. Despite rapid advancements within the research community, NTA methods and data remain underutilized by many potential beneficiaries. To better understand barriers toward widespread adoption, the Best Practices for Non-Targeted Analysis (BP4NTA) working group conducted focus group meetings and follow-up surveys with scientists (n = 61) from various sectors (e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!