During the course of research on mammal mycophagy and movement in the Northern Tablelands of New South Wales, Australia, extensive collections of sequestrate fungi were made, including numerous cortinarioid taxa. Historically any novel taxa would have been described in the cortinarioid sequestrate genera Descomyces, Hymenogaster, Protoglossum, Quadrispora, Thaxterogaster or Timgrovea based on broad morphological similarities of the sporocarps and spore ornamentation. However, consistent with other recent analyses of nuclear DNA regions, taxa from sequestrate genera were found to have affinities with Cortinarius and Descolea or Hebeloma, and to be scattered across many sections within Cortinarius. None of the historical sequestrate cortinarioid genera are monophyletic in our analyses. In particular, the gastroid genus Hymenogaster is paraphyletic, with one clade including two species of Protoglossum in Cortinarius, and a second clade sister to Hebeloma. Eight new species of sequestrate Cortinarius are described and illustrated, and discussion of their affinities with various sections provided: C. argyronius, C. caesibulga and C. cinereoroseolus in section Purpurascentes, C. maculobulga in section Rozites, C. sinapivelus in section Splendidi, C. kaputarensis in a mixed section Phlegmacium/Myxacium within a broader section Dermocybe, C. basorapulus in section Percomes and C. nebulobrunneus in section Pseudotriumphantes. Keys to genera of the Bolbitiaceae and Cortinariaceae containing sequestrate taxa and to currently known Australian species of sequestrate Cortinarius and Protoglossum are provided. As with the related agaricoid taxa, macroscopic characters such as colour and texture of basidioma, degree of loculisation of the hymenophore, and stipe-columella development and form remain useful for distinguishing species, but are generally not so useful at the sectional level within Cortinarius. Microscopic characters such as spore shape, size, and ornamentation, and pileipellis structure (simplex vs duplex and size of hyphal elements) are essential for determining species, and also appear to follow sectional boundaries.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2890163 | PMC |
http://dx.doi.org/10.3767/003158510X512711 | DOI Listing |
Nat Commun
January 2025
Institute of Marine Science and Technology, Shandong University, Qingdao, China.
Lignin, as the abundant carbon polymer, is essential for carbon cycle and biorefinery. Microorganisms interact to form communities for lignin biodegradation, yet it is a challenge to understand such complex interactions. Here, we develop a coastal lignin-degrading bacterial consortium (LD), through "top-down" enrichment.
View Article and Find Full Text PDFBiol Lett
January 2025
Manaaki Whenua-Landcare Research, Lincoln, Canterbury 7640, New Zealand.
Mycovores (animals that consume fungi) are important for fungal spore dispersal, including ectomycorrhizal (ECM) fungi symbiotic with forest-forming trees. As such, fungi and their symbionts may be impacted by mycovore extinction. New Zealand (NZ) has a diversity of unusual, colourful, endemic sequestrate (truffle-like) fungi, most of which are ECM.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
Cattail (), a wetland plant, is emerging as a sustainable materials resource. While most of the species are proven to be a fiber-yielding crop, exhibits the broadest leaf size (5-30 mm), yields highest amount of fiber (≈190.9 g), and captures maximum CO (≈1270 g).
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Institute for Information Technologies Kragujevac, Department of Science, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia.
In this study, the antioxidant and prooxidant potency of protocatechuic aldehyde (PCA) was evaluated using density functional theory (DFT). The potency of direct scavenging of hydroperoxyl (HOO) and lipid peroxyl radicals (modeled by vinyl peroxyl, HC=CHOO) involved in lipid peroxidation was estimated. The repair of oxidative damage in biomolecules (lipids, proteins and nucleic acids) and the prooxidant ability of PCA phenoxyl radicals were considered.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!