Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: To investigate the role of tenascin-C in epithelial-mesenchymal transition (EMT) of the lens epithelium during wound healing in mice. Tenascin-C is a component of the extracellular matrix in patients having post-operative capsular opacification.
Methods: The crystalline lens was injured by needle puncture in tenascin-C null (KO, n=56) and wild-type (WT, n=56) mice in a C57BL/6 background. The animals were killed at day 2, 5, or 10 post-injury. Immunohistochemistry was employed to detect alpha-smooth muscle actin (alphaSMA), a marker of EMT, collagen type I, transforming growth factor beta1 (TGFbeta1), phospho-Smad2, phospho-adducin, and phospho-myosin light chain 9 (MLC9). The expression levels of phospho-adducin and phospho-MLC9 were used as markers for the activation of protein kinase C and Rho kinase, respectively.
Results: The expression of tenascin-C was upregulated in WT lens epithelial cells adjacent to the capsular break at day 5. The results showed that injury-induced EMT of the mouse lens epithelium, as evaluated by histology and the expression patterns of alphaSMA and fibronectin, was attenuated in the absence of tenascin-C. Upregulation of TGFbeta1 expression in the epithelium was also inhibited, and loss of tenascin-C attenuated the phosphorylation of Smad2 and adducin in epithelial cells adjacent to the capsular break. The expression of phospho-adducin was suppressed, while the expression level of phospho-MLC9 was unchanged, in the healing epithelium in the absence of tenascin C.
Conclusions: Tenascin-C is required for injury-induced EMT in the mouse lens epithelium. The mechanism behind this might involve impaired activation of cytoplasmic signaling cascades; i.e., TGFbeta/Smad and protein kinase C-adducing signaling, in the absence of tenascin-C.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2901186 | PMC |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!