The D1 protein (PsbA) of photosystem II (PSII) from Thermosynechococcus elongatus is encoded by a psbA gene family that is typical of cyanobacteria. Although the transcription of these three genes has been studied previously (Kós, P. B., Deák, Z., Cheregi, O., and Vass, I. (2008) Biochim. Biophys. Acta 1777, 74-83), the protein quantification had not been possible due to the high sequence identity between the three PsbA copies. The successful establishment of a method to quantify the PsbA proteins on the basis of reverse phase-LC-electrospray mass ionization-MS/MS (RP-LC-ESI-MS/MS) enables an accurate comparison of transcript and protein level for the first time ever. Upon high light incubation, about 70% PsbA3 could be detected, which closely corresponds to the transcript level. It was impossible to detect any PsbA2 under all tested conditions. The construction of knock-out mutants enabled for the first time a detailed characterization of both whole cells and also isolated PSII complexes. PSII complexes of the ΔpsbA1/psbA2 mutant contained only copy PsbA3, whereas only PsbA1 could be detected in PSII complexes from the ΔpsbA3 mutant. In whole cells as well as in isolated complexes, a shift of the free energy between the redox pairs in the PsbA3 complexes in comparison with PsbA1 could be detected by thermoluminescence and delayed fluorescence measurements. This change is assigned to a shift of the redox potential of pheophytin toward more positive values. Coincidentally, no differences in the Q(A)-Q(B) electron transfer could be observed in flash-induced fluorescence decay or prompt fluorescence measurements. In conclusion, PsbA3 complexes yield a better protection against photoinhibition due to a higher probability of the harmless dissipation of excess energy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2943314PMC
http://dx.doi.org/10.1074/jbc.M110.127142DOI Listing

Publication Analysis

Top Keywords

psii complexes
12
psba copies
8
thermosynechococcus elongatus
8
psba1 detected
8
psba3 complexes
8
fluorescence measurements
8
complexes
6
psba
5
functional characterization
4
characterization quantification
4

Similar Publications

In the context of climate changing environments, microalgae can be excellent organisms to understand molecular mechanisms that activate survival strategies under stress. Chlamydomonas reinhardtii signalling mutants are extremely useful to decipher which strategies photosynthetic organisms use to cope with changeable environments. The mutant vip1-1 has an altered profile of pyroinositol polyphosphates (PP-InsPs), which are signalling molecules present in all eukaryotes and have been connected to P signalling in other organisms including plants, but their implications in other nutrient signalling are still under evaluation.

View Article and Find Full Text PDF

Cyanobacteria are important model organisms for studying the process of photosynthesis and the effects of environmental stress factors. This study aimed to identify the inhibitory sites of NaCl in the whole photosynthetic electron transport in Synechocystis sp. PCC 6803 WT cells by using multiple biophysical tools.

View Article and Find Full Text PDF

Glutathione reductase (GR) maintains the cellular redox state by reducing oxidized glutathione to glutathione (GSH), which regulates antioxidant defense. Additionally, GR plays an essential role in photosynthesis; however, the mechanism by which GR regulates photosystem II (PSII) is largely unknown. We identified six, three, and three GR genes in Gossypium hirsutum, Gossypium arboreum, and Gossypium raimondii, respectively.

View Article and Find Full Text PDF

Molecular glue for phycobilisome attachment to photosystem II in sp. PCC 7002.

Proc Natl Acad Sci U S A

January 2025

State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Science, Peking University, Beijing 100871, People's Republic of China.

Phycobilisomes (PBS) are the major photosynthetic light-harvesting complexes in cyanobacteria and red algae. While the structures of PBS have been determined in atomic resolutions, how PBS are attached to the reaction centers of photosystems remains less clear. Here, we report that a linker protein (LcpA) is required for the attachment of PBS to photosystem II (PSII) in the cyanobacterium sp.

View Article and Find Full Text PDF

Investigating the effects of drought stress and subsequent recovery on the structure and function of chloroplasts is essential to understanding how plants adapt to environmental stressors. We investigated Ctenanthe setosa (Roscoe) Eichler, an ornamental plant that can tolerate prolonged drought periods (40 and 49 days of water withdrawal). Conventional biochemical, biophysical, physiological and (ultra)structural methods combined for the first time in a higher plant with in vivo small-angle neutron scattering (SANS) were used to characterize the alterations induced by drought stress and subsequent recovery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!