A major obstacle for the effective treatment of cancer is the invasive capacity of the tumor cells. Previous studies have shown the capability of mesenchymal stem cells (MSC) to target these disseminated tumor cells and to serve as therapeutic delivery vehicles. However, the molecular mechanisms that would enhance the migration of MSCs toward tumor areas are not well understood. In particular, very little is known about the role that epigenetic mechanisms play in cell migration and tropism of MSCs. In this study, we investigated whether histone deacetylation was involved in the repression of urokinase plasminogen activator (uPA) expression in MSCs derived from umbilical cord blood (CB) and bone marrow (BM). Induction of uPA expression by histone deacetylase inhibitors trichostatin A and sodium butyrate was observed in CB- and BM-derived MSCs examined. In vitro migration assays showed that induction of uPA expression by histone deacetylase inhibitors in CB- and BM-derived MSCs significantly enhanced tumor tropism of these cells. Furthermore, overexpression of uPA in CB-MSCs induced migration capacity toward human cancer cells in vitro. In addition, our results showed that uPA-uPAR knockdown in PC3 prostate cancer cells significantly inhibited tumor-specific migration of uPA-overexpressing MSCs. These results have significant implications for the development of MSC-mediated, tumor-selective gene therapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2923682PMC
http://dx.doi.org/10.1158/1541-7786.MCR-09-0495DOI Listing

Publication Analysis

Top Keywords

tumor cells
12
upa expression
12
urokinase plasminogen
8
plasminogen activator
8
mesenchymal stem
8
cells
8
stem cells
8
induction upa
8
expression histone
8
histone deacetylase
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!