Integrating emergy evaluation and geographic information systems for monitoring resource use in the Abruzzo region (Italy).

J Environ Manage

Ecodynamics Group, Department of Chemistry, University of Siena, Via della Diana 2A, 53100 Siena, Italy.

Published: November 2010

This paper presents an application of an environmental accounting method, namely emergy evaluation, developed for the monitoring and assessment of environmental resource use by local communities in the Abruzzo Region (Italy). Once quantified and classified according to their origin (renewable or non-renewable, local or external), emergy flows were elaborated through a geographic information system (GIS) that allowed us to represent their spatial distribution throughout the region. Outcomes took the form of patterns in which different emergy intensities, namely empower (unit: seJ yr(-1)), were represented through a graduated grey-scale and visualized on a cartographic basis. The concentration of emergy flows, depending on the activity of local communities, showed variable levels of environmental load in different areas. In particular, spatial zones with homogeneous values of empower density (unit: seJ yr(-1) km(-2))--high, medium and low--were detected in order to identify areas with a similar "thermodynamic" nature, emergy being a thermodynamics based function. This allowed for the representation, at a glance, of a kind of geography that mirrors the behavior of a population settled in an area as additional information for investigating the effects of the use of urban structures and functions and improving our understanding of regional systems. A combined use of emergy evaluation and GIS could thus provide a complementary view of a territorial system and inform policy makers for planning specific strategies of future development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2010.06.021DOI Listing

Publication Analysis

Top Keywords

emergy evaluation
12
abruzzo region
8
region italy
8
local communities
8
emergy flows
8
unit sej
8
sej yr-1
8
emergy
6
integrating emergy
4
evaluation geographic
4

Similar Publications

Improper management of biogas residue (BR) can reduce sustainability in the food waste treatment industry. To address this issue, a comprehensive evaluation framework, based on emergy analysis, carbon emissions and economic analysis, is proposed in this study, to explore how different BR disposal practices affect the comprehensive performance of the industry. A food waste treatment plant in Henan Province, China (anaerobic digestion (AD) + BR landfilling: Scenario 1 [S1]), and two alternative scenarios (S2: AD + BR incineration; S3: AD + BR composting) are investigated as a case study.

View Article and Find Full Text PDF

Cities exhibit diverse urban metabolism patterns in terms of the natural environment, industrial composition, energy, and material consumption. A chronicled city-level quantification of emergy metabolic flows over time can significantly enhance the understanding of the temporal dynamics and urban metabolism patterns, which provides critical insights for the transitions to sustainability. However, there exists no city-level urban emergy metabolism dataset in China that can support detailed spatial-temporal analysis.

View Article and Find Full Text PDF

Glaciers provide multiple ecosystem services (ES) to human society. Due to the continued global warming, the valuation of glacier ES is of urgent importance because this knowledge can support the protection of glaciers. However, a systematic valuation of glacier ES is still lacking, particularly from the perspective of ES contributors.

View Article and Find Full Text PDF

A comprehensive screening method of oxidation systems based on reaction rate constant (k value) and emergy (Em value).

Sci Total Environ

January 2025

School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environment Sciences, Shanghai 200233, PR China. Electronic address:

Oxidation systems are diverse and widely used for the degradation of organic pollutants in water. Identifying suitable oxidation systems for certain organic pollutants is a common challenge in practical engineering. Simultaneous consideration of the oxidation selectivity and economy of different oxidation systems for organic pollutants can improve the accuracy of the screening process.

View Article and Find Full Text PDF

LCA-emergy and carbon footprint analysis in a steel industry reporting system: A case study of a Chinese steel company.

Sci Total Environ

January 2025

Construction Engineering & Management, Civil and Environmental Engineering, University of Delaware, Newark, DE 19716, USA. Electronic address:

The steel industry is one of the heavy industries with significant global environmental impacts, and China, as the largest steel-producing country, holds representative significance for global sustainability in the steel production company. This study, based on data from China's largest steel company, quantitatively researched sustainability using a whole life cycle emergy approach and carbon footprint method from 2012 to 2022. The results indicate that, analyzing unit emergy values (UEVs) types, foundational UEVs are the lowest.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!