Background: The hemostatic property of "fresh" whole blood (WB) has been observed in military application and cardiac surgery and is associated with reduced blood loss, transfusion requirements, and donor exposures. The time from donation to transfusion defining "fresh" has not been systematically studied. We undertook an in vitro study of coagulation properties of refrigerated WB stored for 31 days.

Study Design And Methods: Twenty-one WB units were obtained from healthy volunteer donors and stored under standard AABB refrigerated conditions. Samples were obtained on the day after donation and again on Days 2, 4, 7, 11, 14, 17, 21, 24, and 31. Tests included complete blood count, pH, pO2, pCO2, glucose, lactate, thromboelastography (TEG), and platelet function by light transmission aggregometry (LTA).

Results: There was progressive decline in pH, pO2, glucose, and sodium, but progressive increase in potassium, pCO2, and lactate. TEG variables in all units were normal through Day 11; abnormal values in some variables in some units began on Day 14. Final aggregation levels exhibited no change from Day 1 to Day 21 with adenosine diphosphate and epinephrine, but a decline with collagen (Day 7) and ristocetin (Day 17).

Conclusion: This in vitro study of coagulation properties demonstrates preservation of normal integrated coagulation function to a minimum of 11 days under standard conditions of refrigerated storage of WB for transfusion. These observations strongly suggest that the hemostatic quality of WB may extend beyond current transfusion practices. If confirmed clinically, this would increase availability and extend benefits of reduced donor exposure and transfusion requirements.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3821701PMC
http://dx.doi.org/10.1111/j.1537-2995.2010.02772.xDOI Listing

Publication Analysis

Top Keywords

coagulation properties
12
"fresh" blood
8
properties refrigerated
8
transfusion requirements
8
vitro study
8
study coagulation
8
variables units
8
day
7
transfusion
6
blood
5

Similar Publications

Fish scale gelatin/diatom biosilica composite hemostasis sponge with ultrafast dispersing and in situ gelation for hemorrhage control.

Int J Biol Macromol

January 2025

College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China; Sanya Oceanographic Institute, Ocean University of China, Floor 7, Building 1, Yonyou Industrial Park, Yazhou Bay Science & Technology City, Sanya, Hainan Province, China. Electronic address:

Rapid control of hemorrhage is vital in first-aid and surgery. As representative of emergency hemostatic materials, inorganic porous materials achieve rapid hemostasis through concentrating protein coagulation factors by water adsorption to accelerate the coagulation reaction process, however their efficacy is often limited by the insufficient contact of material with blood and the lack of blood clot strength. Herein, we report an ultrafast dispersing and in situ gelation sponge (SG/DB) based on anchoring interface effect for hemorrhage control using freeze drying method after mixing fish scale gel (SG) and tert-butyl alcohol (TBA) pre-crystallized diatom biosilica (DB).

View Article and Find Full Text PDF

To enhance the surface hydrophobicity and emulsification capacity of silica colloidal particles, a natural surface modification of soy hull polysaccharides (SHP) was conducted. Here, the effects of pH and ionic strength on the stability, microstructure and rheological properties of concentrated Pickering emulsions were investigated. Experimental results show emulsions gelled at pH 2, with increasing pH (2-10), SiO-SHP absolute zeta potential (from -19.

View Article and Find Full Text PDF

Biocompatibility of Phosphorus Dendrimers and Their Antibacterial Properties as Potential Agents for Supporting Wound Healing.

Mol Pharm

January 2025

Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland.

Dendrimers are a wide range of nanoparticles with desirable properties that can be used in many areas of medicine. However, little is known about their potential use in wound healing. This study examined the properties of phosphorus dendrimers that were built on a cyclotriphosphazene core and pyrrolidinium (DPP) or piperidinium (DPH) terminated groups, to be used as potential factors that support wound healing ().

View Article and Find Full Text PDF

Thrombin binding aptamer (TBA) is one of the best-known G-quadruplex (G4)-forming aptamers that efficiently binds to thrombin, resulting in anticoagulant effects. TBA also possesses promising antiproliferative properties. As with most therapeutic oligonucleotides, chemical modifications are critical for therapeutic applications, particularly to improve thermodynamic stability, resistance in biological environment, and target affinity.

View Article and Find Full Text PDF

Mechanical Properties and Microstructure of Geopolymer-Based PFSS Synthesized from Excavated Loess.

Materials (Basel)

December 2024

CSCEC Strait Construction and Development Co., Ltd., Fuzhou 350015, China.

Pre-mixed fluidized solidified soil (PFSS) has the advantages of pumpability, convenient construction, and a short setting time. This paper took the excavated loess in Fuzhou as the research object and used cement-fly-ash-ground granulated blast furnace slag-carbide slag as a composite geopolymer system (CFGC) to synthesize PFSS. This study investigated the fluidity and mechanical strength of PFSS under different water-solid ratios and curing agent dosages; finally, the microstructure of the composite geopolymer system-pre-mixed fluidized solidified soil (CFGC-PFSS) was characterized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!