The vacuole is the most prominent organelle of plant cells. Despite its importance for many physiological and developmental aspects of plant life, little is known about its biogenesis and maintenance. Here we show that Arabidopsis plants expressing a dominant-negative version of the AAA (ATPase associated with various cellular activities) ATPase AtSKD1 (SUPPRESSOR OF K+ TRANSPORT GROWTH DEFECT1) under the control of the trichome-specific GLABRA2 (GL2) promoter exhibit normal vacuolar development in early stages of trichome development. Shortly after its formation, however, the large central vacuole is fragmented and finally disappears completely. Secretion assays with amylase fused to the vacuolar sorting signal of Sporamin show that dominant-negative AtSKD1 inhibits vacuolar trafficking of the reporter that is instead secreted. In addition, trichomes expressing dominant-negative AtSKD1 frequently contain multiple nuclei. Our results suggest that AtSKD1 contributes to vacuolar protein trafficking and thereby to the maintenance of the large central vacuole of plant cells, and might play a role in cell-cycle regulation.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-313X.2010.04310.xDOI Listing

Publication Analysis

Top Keywords

atpase atskd1
8
atskd1 contributes
8
contributes vacuolar
8
maintenance arabidopsis
8
plant cells
8
expressing dominant-negative
8
large central
8
central vacuole
8
dominant-negative atskd1
8
atskd1
5

Similar Publications

Sorting of transmembrane proteins into the inner vesicles of multivesicular bodies for subsequent delivery to the vacuole/lysosome can be induced by attachment of a single ubiquitin or K63-linked ubiquitin chains to the cytosolic portion of the cargo in yeast and mammals. In plants, large efforts have been undertaken to elucidate the mechanisms of vacuolar trafficking of soluble proteins. Sorting of transmembrane proteins, by contrast, is still largely unexplored.

View Article and Find Full Text PDF

We have recently shown that overexpression of dominant-negative AtSKD1 versions under control of the trichome and non-root-hair-cell specific GL2 promoter (GL2pro) blocks trafficking of soluble cargo to the vacuole, resulting in its fragmentation and ultimately cell death. GL2pro is also active in the Arabidopsis seeds. When we inspected seeds of the dominant-negative AtSKD1 variants we found two phenotypes.

View Article and Find Full Text PDF

The vacuole is the most prominent organelle of plant cells. Despite its importance for many physiological and developmental aspects of plant life, little is known about its biogenesis and maintenance. Here we show that Arabidopsis plants expressing a dominant-negative version of the AAA (ATPase associated with various cellular activities) ATPase AtSKD1 (SUPPRESSOR OF K+ TRANSPORT GROWTH DEFECT1) under the control of the trichome-specific GLABRA2 (GL2) promoter exhibit normal vacuolar development in early stages of trichome development.

View Article and Find Full Text PDF

A full-length salt-induced transcript homologous to SKD1 (suppressor of K(+) transport growth defect) of the AAA (ATPase associated with a variety of cellular activities)-type ATPase family has been identified from the halophyte Mesembryanthemum crystallinum (ice plant). The expression of mcSKD1 was induced by 200 mM NaCl or higher in cultured ice plant cells. When cultured ice plant cells were grown in a high K(+) (42.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!