Mixing processes of reduced hydrothermal fluids with oxygenated seawater and fluid-rock reactions contribute to the chemical signatures of diffuse venting and likely determine the geochemical constraints on microbial life. We examined the influence of fluid chemistry on microbial diversity and activity by sampling diffuse fluids emanating through mussel beds at two contrasting hydrothermal vents. The H(2) concentration was very low at the basalt-hosted Clueless site, and mixing models suggest O(2) availability throughout much of the habitat. In contrast, effluents from the ultramafic-hosted Quest site were considerably enriched in H(2) , while O(2) is likely limited to the mussel layer. Only two different hydrogenase genes were identified in clone libraries from the H(2) -poor Clueless fluids, but these fluids exhibited the highest H(2) uptake rates in H(2) -spiked incubations (oxic conditions, at 18 °C). In contrast, a phylogenetically diverse H(2) -oxidizing potential was associated with distinct thermal conditions in the H(2) -rich Quest fluids, but under oxic conditions, H(2) uptake rates were extremely low. Significant stimulation of CO(2) fixation rates by H(2) addition was solely illustrated in Quest incubations (P-value <0.02), but only in conjunction with anoxic conditions (at 18 °C). We conclude that the factors contributing toward differences in the diversity and activity of H(2) oxidizers at these sites include H(2) and O(2) availability.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1574-6941.2010.00940.xDOI Listing

Publication Analysis

Top Keywords

geochemical constraints
8
diversity activity
8
hydrothermal fluids
8
uptake rates
8
oxic conditions
8
fluids
6
constraints diversity
4
activity -oxidizing
4
-oxidizing microorganisms
4
microorganisms diffuse
4

Similar Publications

Chemical weathering processes play a key role in regulating the global climate over geological time scales. Lithium (Li) isotope compositions have proven to be a robust proxy for tracing weathering processes that produce secondary minerals, such as clays and oxides, with a focus often placed on Li adsorption to, or incorporation into, clay minerals. In addition, the interaction between Li and Fe-oxides has long been assumed and discussed based on field observations, but experimental constraints on this process are lacking.

View Article and Find Full Text PDF

Deep oil reservoirs are becoming increasingly significant fields of hydrocarbon exploration in recent decades. Hydrothermal fluid flow is deemed as a potentially crucial factor affecting the occurrence of deep oil reservoirs, such as enhancing porosity/permeability of reservoirs, accelerating oil generation and thermal cracking, and modifying organic properties of crude oils. Understanding the interplay between hydrothermal fluids and crude oils would provide useful constraints for reconstructing hydrocarbon accumulation processes and predicting the distribution patterns of crude oils.

View Article and Find Full Text PDF

A tale of two planets: Disparate evolutionary models for Mars inferred from radiogenic isotope compositions of Martian meteorites.

Proc Natl Acad Sci U S A

January 2025

Cosmochemistry and Isotope Signatures Group Nuclear and Chemical Sciences Division Lawrence Livermore National Laboratory, Livermore, CA 94550.

The radiogenic isotopic compositions of basaltic Martian meteorites (shergottites) and clinopyroxene/olivine cumulate meteorites (nakhlite/chassignites) are used to define the global evolution of Mars. However, the two main groups of meteorites demonstrate that their sources underwent divergent styles of magmatic evolution. The shergottites portray a planet that differentiated ~4.

View Article and Find Full Text PDF

It is well known that the sedimentary rock record is both incomplete and biased by spatially highly variable rates of sedimentation. Without absolute age constraints of sufficient resolution, the temporal correlation of spatially disjunct records is therefore problematic and uncertain, but these effects have rarely been analysed quantitatively using signal processing methods. Here we use a computational process model to illustrate and analyse how spatial and temporal geochemical records can be biased by the inherent, heterogenous processes of marine sedimentation and preservation.

View Article and Find Full Text PDF

New Re-Os Geochronological Data from the Upper Doushantuo Formation: Age Constraint on the Shuram Excursion and Implication for the Ediacaran Fluctuated Continental Weathering.

ACS Omega

December 2024

Hunan Provincial Key Laboratory of Geochemical Processes and Resource Environmental Effects, Changsha, Hunan 410014, China.

The largest negative carbon-isotope excursion in geological history has been reported by several studies of the upper Doushantuo Formation of South China, which has been correlated to the middle Ediacaran-Shuram excursion (SE). Due to a scarcity of radiometric age constraints on the excursion in South China, however, global correlations and comparisons of this event remain a debate. Here, we present Re-Os and carbon isotope data on organic-rich sediments obtained from a drill-core sample in the Chengkou area, the northeastern margin of the Yangtze Platform, and South China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!