Topology-directed control on thermal stability: micelles formed from linear and cyclized amphiphilic block copolymers.

J Am Chem Soc

Department of Organic and Polymeric Materials, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan.

Published: August 2010

The thermal stability of a self-assembled micelle was remarkably enhanced by a topology effect. Linear poly(butyl acrylate)-block-poly(ethylene oxide)-block-poly(butyl acrylate) (1) and the cyclized product, poly(butyl acrylate)-block-poly(ethylene oxide) (2), were self-assembled to form flower-like micelles. By means of viscometry, the critical micelle concentrations were determined to be 0.13 and 0.14 mg/mL for 1 and 2, respectively. Dynamic light scattering, atomic force microscopy, and transmission electron microscopy studies revealed that both micelles are spherical and approximately 20 nm in diameter. Despite no distinctive change in the chemical composition or structure of the micelle, we found that the cloud point (T(c)) was elevated by more than 40 degrees C through the linear-to-cyclic topological conversion of the polymer amphiphile. Furthermore, the T(c) was tuned by coassembly of 1 and 2.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja104691jDOI Listing

Publication Analysis

Top Keywords

thermal stability
8
polybutyl acrylate-block-polyethylene
8
topology-directed control
4
control thermal
4
stability micelles
4
micelles formed
4
formed linear
4
linear cyclized
4
cyclized amphiphilic
4
amphiphilic block
4

Similar Publications

In this study, polyethylene glycol (PEG) and dextran (Dex) were chemically modified to obtain amino-functionalized PEG (PEG-(NH)) and oxidized dextran (ODex). They were subsequently reacted via -NH and -CHO groups to synthesize a macromolecular Schiff base particle. The structures, morphologies, and thermal properties of the macromolecular Schiff base particle were characterized using Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and thermogravimetry analysis (TGA).

View Article and Find Full Text PDF

The effects of 5.8-GHz microwave (MW) irradiation on the synthesis of mesoporous selenium nanoparticles (mSeNPs) in aqueous medium by reduction of selenite ions with ascorbic acid, using zinc nanoparticles as a hard template and cetyltrimethylammonium bromide (CTAB) as a micellar template, are examined for the first time with a particular emphasis on MW-particle interactions and the NPs morphology. This MW-assisted synthesis is compared to 2.

View Article and Find Full Text PDF

A chicken protein hydrogel (HG) was enzymatically prepared and blended with a carnauba wax-based oleogel (OG) to form bigels (BG) in ratios of 50:50 to 90:10. These systems were infused with thyme essential oil (TEO) at 0.5 %, 1 %, and 2 % v/v to harness its antioxidant properties.

View Article and Find Full Text PDF

Chitosan/squid ring teeth protein hydrogels for the controlled release of curcumin.

Int J Biol Macromol

December 2024

Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhejiang Ocean University, Zhoushan 316022, China; College of Food and Medicine, Zhejiang Ocean University, Zhoushan 316022, China. Electronic address:

Biocompatible and degradable hydrogels are extensively utilized for the delivery and controlled release of bioactive agents. Chitosan/squid ring teeth protein (SRT) hydrogels (CH/SRTs) cross-linked by genipin were fabricated, and their gel properties and structural characteristics were analyzed across varying SRT contents. Additionally, the curcumin-release behavior of curcumin-loaded CH/SRTs (Cur-CH/SRTs) was evaluated.

View Article and Find Full Text PDF

Preparation and characterization of cellulose nanocrystal coated with silver nanoparticles with antimicrobial activity by enzyme method.

Int J Biol Macromol

December 2024

Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang, China. Electronic address:

Silver nanoparticles (AgNPs) exhibit broad-spectrum antibacterial activity and serve as effective antimicrobial agents against antibiotic-resistant bacteria. In this study, agricultural waste corn straw was used as the raw material to obtain cellulose nanocrystal (CNC) through enzymatic hydrolysis. The hydrolysate was employed as reducing agents to synthesize CNC-AgNPs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!