Clostridium cellulovorans is an anaerobic, mesophilic bacterium that efficiently degrades native substrates in soft biomass such as corn fibre and rice straw by producing an extracellular enzyme complex called the cellulosomes. By examining genome sequences from multiple Clostridium species, comparative genomics offers new insight into genome evolution and the way natural selection moulds functional DNA sequence evolution. Recently, we reported the whole genome sequence of C. cellulovorans. A total of 57 cellulosomal genes were found in the C. cellulovorans genome and coded for not only carbohydrate-active enzymes but also lipase, peptidase and proteinase inhibitors, in addition to two novel genes encoding scaffolding proteins CbpB and CbpC. Interestingly, the genome size of C. cellulovorans was about 1 Mbp larger than that of other cellulosome-producing clostridia: mesophilic C. cellulolyticum and thermophilic C. thermocellum. Since the C. cellulovorans genome included not only cellulosomal genes but also a large number of genes encoding non-cellulosomal enzymes, the genome expansion of C. cellulovorans included genes more related to degradation of polysaccharides, such as hemicelluloses and pectins, than to cellulose. In this review, we propose a strategy for industrial applications such as biofuel production using enhanced mesophilic cellulosome- and solvent-producing clostridia.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09593330.2010.490856DOI Listing

Publication Analysis

Top Keywords

comparative genomics
8
clostridium cellulovorans
8
biofuel production
8
cellulosomal genes
8
cellulovorans genome
8
genes encoding
8
cellulovorans
7
genome
7
genes
5
mesophilic
4

Similar Publications

Quantitative Proteomics Identifies Profilin-1 as a Pseudouridine-Binding Protein.

J Am Chem Soc

January 2025

Department of Chemistry, University of California, Riverside, California 92521-0403, United States.

Pseudouridine (Ψ) is the most abundant RNA modification in nature; however, not much is known about the biological functions of this modified nucleoside. Employing an unbiased quantitative proteomics method, we identified multiple candidate reader proteins of Ψ in RNA, including a cytoskeletal protein profilin-1 (PFN1). We demonstrated that PFN1 binds directly and selectively to Ψ-containing RNA.

View Article and Find Full Text PDF

Using Multi-Omics Methods to Understand Gouty Arthritis.

Curr Rheumatol Rev

January 2025

Department of Rheumatology, Beijing Jishuitan Hospital, Guizhou Hospital, China.

Gouty arthritis is a common arthritic disease caused by the deposition of monosodium urate crystals in the joints and the tissues around it. The main pathogenesis of gout is the inflammation caused by the deposition of monosodium urate crystals. Omics studies help us evaluate global changes in gout during recent years, but most studies used only a single omics approach to illustrate the mechanisms of gout.

View Article and Find Full Text PDF

When introduced to multiple distinct ranges, invasive species provide a compelling natural experiment for understanding the repeatability of adaptation. Ambrosia artemisiifolia is an invasive, noxious weed, and chief cause of hay fever. Leveraging over 400 whole-genome sequences spanning the native-range in North America and 2 invasions in Europe and Australia, we inferred demographically distinct invasion histories on each continent.

View Article and Find Full Text PDF

Appetite, as the internal drive for food intake, is often dysregulated in a broad spectrum of conditions associated with over- and under-nutrition across the lifespan. Appetite regulation is a complex, integrative process comprising psychological and behavioral events, peripheral and metabolic inputs, and central neurotransmitter and metabolic interactions. The microbiota-gut-brain axis has emerged as a critical mediator of multiple physiological processes, including energy metabolism, brain function, and behavior.

View Article and Find Full Text PDF

Transcription factor ABF3 modulates salinity stress-enhanced jasmonate signaling in .

Plant Divers

November 2024

CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.

Salinity is a severe abiotic stress that affects plant growth and yield. Salinity stress activates jasmonate (JA) signaling in , but the underlying molecular mechanism remains to be elucidated. In this study, we confirmed the activation of JA signaling under saline conditions and demonstrated the importance of the CORONATINE INSENSITIVE1 (COI1)-mediated JA signaling for this process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!