Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cphc.201000348 | DOI Listing |
Water Res
December 2024
Department of Chemistry and Chemical Engineering, Inha University, Incheon, 22212, Republic of Korea; Program in Biomedical Science and Engineering, Inha University, Incheon, 22212, Republic of Korea; NanoRaman Analysis Corp., 100, Inha-ro, Michuhol-gu, Incheon, Republic of Korea. Electronic address:
Nanoplastics (NPs) are growing concerns for health and the environment, being widely distributed across marine, freshwater, air, and biological systems. Analyzing NPs in real environmental samples requires pretreatment, which has traditionally been complex and often leads to underestimation in actual samples, creating a gap between real-world conditions and research findings. In this study, we propose using anodic aluminum oxide (AAO) membrane as a direct Raman substrate for particles on a filter, achieving complete recovery during separation and concentration while simplifying the pretreatment stages.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Civil, Environmental and Construction Engineering, University of Central Florida, Orlando, FL, USA.
Harmful algal blooms (HABs) can release cyanotoxins such as microcystins (MCs), especially, microcystin-leucine-arginine (MC-LR) which is one of the commonest and most toxic, into our water bodies and can lead to several acute or chronic diseases such as liver diseases and respiratory irritation in humans. There is an increasing need for rapid and simple detection of MC-LR in water bodies for early warning of HABs. In this study, we developed an innovative on-site screening electrochemical impedance spectroscopy (EIS) biosensor with a simplified calibration curve that can rapidly detect blooms for early action in similar water bodies.
View Article and Find Full Text PDFJACS Au
December 2024
SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States.
Establishing energy correlations among different metals can accelerate the discovery of efficient and cost-effective catalysts for complex reactions. Using a recently introduced coordination-based model, we can predict site-specific metal binding energies (Δ ) that can be used as a descriptor for chemical reactions. In this study, we have examined a range of metals including Ag, Au, Co, Cu, Ir, Ni, Os, Pd, Pt, Rh, and Ru and found linear correlations between predicted Δ and adsorption energies of CH and O (Δ and Δ ) at various coordination environments for all the considered metals.
View Article and Find Full Text PDFFood Chem
December 2024
Laboratory of Functional Polymers, School of Materials Science and Engineering, Linyi University, Linyi 276005, China. Electronic address:
Organicphosphorus is a ubiquitous pesticide that has potential hazards to human health and environmental well-being. Therefore, the precise identification of residues of organophosphorus pesticides (OPs) emerges as an urgent necessity. A ratiometric fluorescent sensor for the detection of OPs by leveraging the catalytic activities of Ce and Ce on the two fluorescent substrates 4-Methylumbelliferyl phosphate (4-MUP) and o-phenylenediamine (OPD) correspondingly was designed.
View Article and Find Full Text PDFJ Funct Biomater
November 2024
Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK.
Tissue engineering research for neurological applications has demonstrated that biomaterial-based structural bridges present a promising approach for promoting regeneration. This is particularly relevant for penetrating traumatic brain injuries, where the clinical prognosis is typically poor, with no available regeneration-enhancing therapies. Specifically, repurposing clinically approved biomaterials offers many advantages (reduced approval time and achieving commercial scaleup for clinical applications), highlighting the need for detailed screening of potential neuromaterials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!