The relationships between sulphate reduction and COD/VFA utilisation using grass cellulose as carbon and energy sources.

Appl Biochem Biotechnol

Council for Scientific and Industrial Research, Natural Resources and the Environment, Pretoria, Gauteng, South Africa.

Published: February 2011

The release of mine effluents can have a damaging impact on receiving water bodies. Therefore, treatment of mine waters before discharge is imperative. A novel biological SO²⁻₄ removal technology has been developed whereby the degradation/fermentation products of grass cellulose, volatile fatty acids (VFA), function as the electron donors and SO²⁻₄ as the electron acceptor. The aim of the study presented here was to elucidate the interactions between the cellulose degradation rate, the chemical oxygen demand (COD), VFA production and its/utilisation rate as well as the sulphate reduction rate. To this end, two stirred batch reactors were operated: a test and a control reactor. The results showed that high COD and VFA concentrations were achieved after cellulose degradation, which resulted in a rapid decrease in the SO²⁻₄ concentration in the test reactor. The VFA results indicated that propionic and butyric acids were preferentially utilised, producing acetate. In the control reactor, the VFA and the COD production increased initially at the same rate, followed later by a decrease at a similar rate. These results suggest that the degradation products formed were utilised by the methanogenic bacteria to produce methane rather than by the sulphate-reducing bacteria, since the control reactor contained no sulphate (Visser 1995). Furthermore, these results showed a clear relationship between the COD/VFA production and the SO²⁻₄reduction in the test reactor and between the COD and VFA pattern in the control reactor.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12010-010-9047-4DOI Listing

Publication Analysis

Top Keywords

control reactor
16
cod vfa
12
sulphate reduction
8
grass cellulose
8
cellulose degradation
8
test reactor
8
reactor vfa
8
vfa
6
reactor
6
rate
5

Similar Publications

Microbial synergy mechanism of hydrogen flux influence on hydrogen-based partial denitrification coupled with anammox in a membrane biofilm reactor.

Environ Res

January 2025

State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China. Electronic address:

The hydrogen-based partial denitrification coupled with anammox (H-PDA) biofilm system effectively achieves low-carbon and high-efficiency biological nitrogen removal. However, the effects and biological interaction mechanism of H flux with the H-PDA system have not yet been understood. This study assessed the effects of H flux on interactions among anammox bacteria (AnAOB), denitrifying bacteria (DB), and sulfate-reducing bacteria (SRB) coexisting in a H-PDA system.

View Article and Find Full Text PDF

Glycerol carbonate (GC) can be produced from glycerol (GL), a low-value byproduct in the biodiesel industry. In this work, continuous processes of GC production via transesterification from crude GL and diethyl carbonate (DEC) were developed using Aspen Plus. Two cases were considered, and their process performances were compared.

View Article and Find Full Text PDF

To balance the stability and dissolution of polyacrylamide (PAM), emulsion drag reducers dominate the successful operation of volumetric fracturing. Herein, a pH-switchable four-tailed ionic liquid surfactant (OA/Cyclen) is synthesized by oleic acid (OA) and 1,4,7,10-tetraazacyclododecane (Cyclen). The four-tailed structure of OA/Cyclen enhances the stability of the emulsion polymerization reactor and supplies enough switchable sites for triggering the intensified release of the PAM emulsion.

View Article and Find Full Text PDF

Self-Sustained Biophotocatalytic Nano-Organelle Reactors with Programmable DNA Switches for Combating Tumor Metastasis.

Adv Mater

January 2025

Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, P. R. China.

Metastasis, the leading cause of mortality in cancer patients, presents challenges for conventional photodynamic therapy (PDT) due to its reliance on localized light and oxygen application to tumors. To overcome these limitations, a self-sustained organelle-mimicking nanoreactor is developed here with programmable DNA switches that enables bio-chem-photocatalytic cascade-driven starvation-photodynamic synergistic therapy against tumor metastasis. Emulating the compartmentalization and positional assembly strategies found in living cells, this nano-organelle reactor allows quantitative co-compartmentalization of multiple functional modules for the designed self-illuminating chemiexcited PDT system.

View Article and Find Full Text PDF

Progress in Continuous Flow Synthesis of Hydrogen-Bonded Organic Framework Material Synthons.

Molecules

December 2024

Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China.

Hydrogen-bonded organic framework (HOF) materials are typically formed by the self-assembly of small organic units (synthons) with specific functional groups through hydrogen bonding or other interactions. HOF is commonly used as an electrolyte for batteries. Well-designed HOF materials can enhance the proton exchange rate, thereby boosting battery performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!