During hind limb unloading (HU), the soleus is often in a shortened position and the natural physiological stimulus of muscle spindles is altered, such that muscle spindle activity also changes. Using isolated spindle conditions, the present study investigates the electrophysiological activity and ultrastructure of muscle spindles following HU. Results show that muscle spindle discharges fall into either of two main patterns, single spikes or spike clusters in shortened positions, with a steady frequency of 18-38 spikes/s (mean 29.08 +/- 2.45) in an extended position. Following 14-day HU, afferent discharge activity was significantly altered in soleus muscle spindles. Duration of individual spikes was significantly prolonged, from 0.54 +/- 0.05 ms for control rats to 1.53 +/- 0.25 ms for rats in the HU group. In a shortened position, regular rhythm afferent discharges were obviously depressed, and the majority of muscle spindles became silent, while in an extended position, the discharges remained continuous but with decreased frequency. Results also show that the ultrastructure of muscle spindles experience degenerative changes during HU. Altered muscle spindle afference could possibly modify the activity of motor neurons and further affect the activity of extrafusal fibers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10974-010-9215-8 | DOI Listing |
Compr Physiol
December 2024
School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA.
The evolution of mechanisms for terrestrial locomotion has resulted in multi-segmented limbs that allow navigation on irregular terrains, changing of direction, manipulation of external objects, and control over the mechanical properties of limbs important for interaction with the environment, with corresponding changes in neural pathways in the spinal cord. This article is focused on the organization of these pathways, their interactions with the musculoskeletal system, and the integration of these neuromechanical circuits with supraspinal mechanisms to control limb impedance. It is argued that neural pathways from muscle spindles and Golgi tendon organs form a distributive impedance controller in the spinal cord that controls limb impedance and coordination during responses to external disturbances.
View Article and Find Full Text PDFNature
December 2024
Faculty of Medicine, Department of Brain Sciences, Imperial College London, London, UK.
Exp Physiol
November 2024
School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia.
Position sense is arguably more important than any of the other proprioceptive senses, because it provides us with information about the position of our body and limbs in relationship to one another and to our surroundings; it has been considered to contribute to our self-awareness. There is currently no consensus over the best method of measuring position sense. We have recently measured position sense with three commonly used methods.
View Article and Find Full Text PDFJ Muscle Res Cell Motil
November 2024
PAS, Section for Physiology, Department for Veterinary and Animal Sciences (IVH), Faculty of Health & Medical Sciences, University of Copenhagen, Dyrlaegevej 100, Frederiksberg C, 1870, Denmark.
In some neurological conditions, like Parkinson's disease (PD) and Cerebral Palsy (CP), as well as with ageing, muscle spindles have been mentioned as participating in the pathological response of observed muscles. The aim of this review has therefore been to examine what is known about muscle spindle receptors, their function and how they are involved in regulating precise muscle movement in relation to these two conditions. Data from acoustic myography (AMG) studies with healthy controls (HC), CP and PD subjects have been re-examined with a view to identifying possible effects of changes in muscle movement which could be related to muscle spindle receptor function.
View Article and Find Full Text PDFExp Physiol
November 2024
School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia.
Muscle spindles are stretch-sensitive mechanoreceptors found in the skeletal muscles of most four-limbed vertebrates. They are unique amongst sensory receptors in the ability to regulate their sensitivity by contraction of the intrafusal muscle fibres on which the sensory endings lie. Muscle spindles have revealed a remarkable diversity of functions, including reflex action in posture and locomotion, contributing to bodily self awareness, and influencing wound healing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!