A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionnj9ectui674fs730b5tfnu49jvglrq5m): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Optimal population coding by noisy spiking neurons. | LitMetric

Optimal population coding by noisy spiking neurons.

Proc Natl Acad Sci U S A

Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA.

Published: August 2010

In retina and in cortical slice the collective response of spiking neural populations is well described by "maximum-entropy" models in which only pairs of neurons interact. We asked, how should such interactions be organized to maximize the amount of information represented in population responses? To this end, we extended the linear-nonlinear-Poisson model of single neural response to include pairwise interactions, yielding a stimulus-dependent, pairwise maximum-entropy model. We found that as we varied the noise level in single neurons and the distribution of network inputs, the optimal pairwise interactions smoothly interpolated to achieve network functions that are usually regarded as discrete--stimulus decorrelation, error correction, and independent encoding. These functions reflected a trade-off between efficient consumption of finite neural bandwidth and the use of redundancy to mitigate noise. Spontaneous activity in the optimal network reflected stimulus-induced activity patterns, and single-neuron response variability overestimated network noise. Our analysis suggests that rather than having a single coding principle hardwired in their architecture, networks in the brain should adapt their function to changing noise and stimulus correlations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2922524PMC
http://dx.doi.org/10.1073/pnas.1004906107DOI Listing

Publication Analysis

Top Keywords

pairwise interactions
8
optimal population
4
population coding
4
coding noisy
4
noisy spiking
4
spiking neurons
4
neurons retina
4
retina cortical
4
cortical slice
4
slice collective
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!