Background: The localization in tumor tissue of various markers by immunohistochemistry can help to establish a diagnosis or predict prognosis. Nitric oxide is associated with tumors and has been studied indirectly by nitrotyrosine analysis and with use of the enzymes nitric oxide synthase (NOS)1, NOS2, and NOS3. Nitric oxide reacts with superoxide anions to yield peroxynitrite, which has toxic effects on genes. Peroxynitrite adds a nitro group to the benzene ring of tyrosine to form nitrotyrosine. The accumulation of nitrotyrosine, a stable product in cells, indicates the formation of peroxynitrite. Nitric oxide stimulates the production of cyclooxygenase-2 (COX-2), which has been associated with angiogenesis in tumors. Neovascularization influences tumor prognosis, as demonstrated by microvessel studies with use of CD34, an immunohistochemical endothelial cell marker. This study examines the expression of these markers in chondrosarcomas and their relation to histological grade and prognosis.
Methods: Tissue microarrays composed of formalin-fixed tissue samples from 101 patients with chondrosarcoma were immunohistochemically stained to localize NOS1, NOS2, NOS3, COX-2, nitrotyrosine, and CD34. Five samples of normal cartilage were used as controls. Patient demographics, selected surgical variables, and tumor grade were tabulated, and the associations were analyzed. Analyses of local and overall survival rates were performed with use of the Kaplan-Meier method, and multivariable analyses were performed.
Results: There was a significant association of nitrotyrosine, COX-2, and CD34 with histological grades (p = 0.022, p = 0.014, and p = 0.028, respectively), but not with overall prognosis (p = 0.064, p = 0.143, and p = 0.581, respectively). The presence of NOS2 was associated with a lower rate of local disease-free survival (p = 0.038), and positive expressions of NOS1 and NOS2 were associated with decreased overall survival rates (p = 0.007 and p < 0.001, respectively). On multivariable analysis, NOS2 expression demonstrated an independent prognostic impact on local disease-free survival; NOS1 and NOS2 expression was a dependent variable, and their isolated or combined expression was related to lower overall survival rates (p = 0.046 and p = 0.004) (hazard ratio, 3.17 [95% confidence interval, 1.0 to 9.8] and 5.58 [95% confidence interval, 1.7 to 18.0], respectively).
Conclusions: Immunohistochemical markers may have an independent value in predicting the prognosis for patients with chondrosarcoma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2106/JBJS.H.00717 | DOI Listing |
Clin Exp Nephrol
January 2025
Renal Medicine Division, Department of Medicine, Emory University School of Medicine, 101 Woodruff Circle, Woodruff Memorial Research Building, Office 338A, Atlanta, GA, 30322, USA.
Background: Renal autoregulatory mechanisms modulate renal blood flow. Connecting tubule glomerular feedback (CNTGF) is a vasodilator mechanism in the connecting tubule (CNT), triggered paracrinally when high sodium levels are detected via the epithelial sodium channel (ENaC). The primary activation factor of CNTGF-whether NaCl concentration, independent luminal flow, or the combined total sodium delivery-is still unclear.
View Article and Find Full Text PDFJ Nutr
January 2025
USDA-ARS, Jean Mayer Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA. Electronic address:
Background: Acute neuroinflammatory and oxidative-stress (OS)-inducing stressors, such as high energy and charge (HZE) particle irradiation, produce accelerated aging in the brain. Anti-inflammatory and antioxidant foods, such as blueberries (BB), attenuate neuronal and cognitive deficits when administered to rodents before or both before and after HZE particle exposure. However, the effects of post-stressor treatments are unknown and may be important to repair initial damage and prevent progressive neurodegeneration.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
Nitric oxide (NO) has garnered significant attention as a critical regulatory factor and signaling molecule in plant growth. However, the effects of microplastic pollution on the release of NO by algae have not been reported. Thus, in this study, the release of NO by Skeletonema costatum and Gymnodinium sp.
View Article and Find Full Text PDFNeuropharmacology
January 2025
Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Pharmacology and Toxicology Department, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai 46612, Egypt.
Seizures can lead to cardiac dysfunction. Multiple pathways contribute to this phenomenon, of which the chaperone sigma-1 receptor (S1R) signaling represents a promising nexus between the abnormalities seen in both epilepsy and ensuing cardiac complications. The study explored the potential of Berberine (BER), a promising S1R agonist, in treating epilepsy and associated cardiac abnormalities in a pentylenetetrazol (PTZ) kindling rat model of epilepsy.
View Article and Find Full Text PDFJ Allergy Clin Immunol Pract
January 2025
Clinic of Internal Medicine II - Department of Pneumology, Medical University of Vienna - Vienna (Austria). Electronic address:
Background: Clinical studies of biologics in severe asthma exclude smokers or ex-smokers (ExS) with over 10 pack-years (py). Thus, the effectiveness of this therapy in ex-smokers with severe asthma is not well understood.
Objectives: To assess the impact of smoking on clinical efficiency of biologics in patients with severe asthma from the German Asthma Net (GAN), a comprehensive international registry.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!