Human apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G (APOBEC3G, hereinafter referred to as A3G) is an innate virus restriction factor that inhibits human immunodeficiency virus type 1 (HIV-1) replication and induces excessive deamination of cytidine residues in nascent reverse transcripts. To test the hypothesis that this enzyme can also help generate viral sequence diversification and the evolution of beneficial viral variants, we have examined the impact of A3G on the acquisition of (-)2',3'-dideoxy-3'-thiacytidine (3TC) resistance in vitro. That characteristic resistance mutations are rapidly fixed in the presence of A3G and 3TC suggests that A3G-mediated editing can be an important source of genetic variation on which natural selection acts to shape the structure of HIV-1 populations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2937764PMC
http://dx.doi.org/10.1128/JVI.01223-10DOI Listing

Publication Analysis

Top Keywords

sequence diversification
8
human apobec3g-mediated
4
apobec3g-mediated editing
4
editing promote
4
promote hiv-1
4
hiv-1 sequence
4
diversification accelerate
4
accelerate adaptation
4
adaptation selective
4
selective pressure
4

Similar Publications

An InDel variant in the promoter of the NAC transcription factor MdNAC18.1 plays a major role in apple fruit ripening.

Plant Cell

December 2024

Shenzhen Research Institute, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China.

A complex regulatory network governs fruit ripening, but natural variations and functional differentiation of fruit ripening genes remain largely unknown. Utilizing a genome-wide association study (GWAS), we identified the NAC family transcription factor MdNAC18.1, whose expression is closely associated with fruit ripening in apple (Malus × domestica Borkh.

View Article and Find Full Text PDF

Bioinformatic approaches for accurate assessment of A-to-I editing in complete transcriptomes.

Methods Enzymol

January 2025

Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel. Electronic address:

A-to-I RNA editing is an RNA modification that alters the RNA sequence relative to the its genomic blueprint. It is catalyzed by double-stranded RNA-specific adenosine deaminase (ADAR) enzymes, and contributes to the complexity and diversification of the proteome. Advancement in the study of A-to-I RNA editing has been facilitated by computational approaches for accurate mapping and quantification of A-to-I RNA editing based on sequencing data.

View Article and Find Full Text PDF

Phytoplasmas are a group of plant-pathogenic, cell-wall-less bacteria vectored primarily by leafhoppers (Hemiptera Cicadellidae), one of the most diverse families of insects. Despite the importance of documenting associations between phytoplasmas, their insect vectors, and plant hosts to prevent disease outbreaks, such knowledge is currently highly incomplete and largely neglects the diversity of the system in natural areas. Here, we used anchored hybrid enrichment (AHE) to recover the DNA of five plant genes (, , , , and ) in 58 phloem-feeding leafhoppers from around the world that had previously tested positive for phytoplasma infection.

View Article and Find Full Text PDF

Molecular Markers for the Phylogenetic Reconstruction of : A Quantitative Review.

Pathogens

January 2025

Facultad de Ciencias, Universidad Autónoma de Baja California, Ensenada 22860, BC, Mexico.

is the parasite responsible for Chagas disease, which has a significant amount of genetic diversification among the species complex. Many efforts are routinely made to characterize the genetic lineages of circulating in a particular geographic area. However, the genetic loci used to typify the genetic lineages of have not been consistent between studies.

View Article and Find Full Text PDF

Cytogenomics of (Hymenoptera: Apidae) and the Sharing of a Satellite DNA Family in Several Neotropical Meliponini Genera.

Genes (Basel)

January 2025

Laboratório de Citogenética de Insetos, Departamento de Biologia Geral, Universidade Federal de Viçosa, Campus Universitário, Viçosa 36570-900, Minas Gerais, Brazil.

Background/objectives: A striking feature of the karyotypes of stingless bees is the large amount of heterochromatin present in most species. Cytogenomic studies performed in some Meliponini species have suggested that evolutionary events related to the diversification and amplification of satellite DNA families in the heterochromatin may reflect the structuring of phylogenetic clades in this tribe. In this study, we performed a genomic analysis in to characterize different satDNA families in its genome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!