Yolk testosterone reduces oxidative damages during postnatal development.

Biol Lett

Departamento deEcoloxía e Bioloxía Animal, Edificio de Ciencias Experimentales, Universidad de Vigo, 36310 Vigo, Spain.

Published: February 2011

Conditions experienced during early life can influence the development of an organism and several physiological traits, even in adulthood. An important factor is the level of oxidative stress experienced during early life. In birds, extra-genomic egg substances, such as the testosterone hormone, may exert a widespread influence over the offspring phenotype. Interestingly, testosterone can also upregulate the bioavailability of certain antioxidants but simultaneously increases the susceptibility to oxidative stress in adulthood. However, little is known about the effects of maternally derived yolk testosterone on oxidative stress in developing birds. Here, we investigated the role of yolk testosterone on oxidative stress of yellow-legged gull chicks during their early development by experimentally increasing yolk testosterone levels. Levels of antioxidants, reactive oxygen species and lipid oxidative damage were determined in plasma during nestlings' growth. Our results revealed that, contrary to control chicks, birds hatched from testosterone-treated eggs did not show an increase in the levels of oxidative damage during postnatal development. Moreover, the same birds showed a transient increase in plasma antioxidant levels. Our results suggest that yolk testosterone may shape the oxidative stress-resistance phenotype of the chicks during early development owing to an increase in antioxidant defences and repair processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3030863PMC
http://dx.doi.org/10.1098/rsbl.2010.0421DOI Listing

Publication Analysis

Top Keywords

yolk testosterone
20
oxidative stress
16
oxidative
8
postnatal development
8
experienced early
8
early life
8
testosterone oxidative
8
chicks early
8
early development
8
oxidative damage
8

Similar Publications

The prenatal transfer of testosterone (T) from mother to offspring is an important source of phenotypic plasticity. In birds, exposure to ecologically relevant stimuli, such as social competition or an attractive mate, can cause females to deposit more T into their egg yolks. Exposure to elevated yolk T can modify the expression of several fitness-related traits in offspring (e.

View Article and Find Full Text PDF

Maternal social environment shapes yolk testosterone allocation and embryonic neural gene expression in tree swallows.

Horm Behav

July 2024

School of Biological Sciences, University of Oklahoma, Norman, OK 73019, USA; Department of Biology, Indiana University, Bloomington, IN 47405, USA. Electronic address:

Offspring from females breeding in competitive social environments are often exposed to more testosterone (T) during embryonic development, which can affect traits from growth to behavior in potentially adaptive ways. Despite the important role of maternally derived steroids in shaping offspring development, the molecular mechanisms driving these processes are currently unclear. Here, we use tree swallows (Tachycineta bicolor) to explore the effects of the maternal social environment on yolk T concentrations and genome-wide patterns of neural gene expression in embryos.

View Article and Find Full Text PDF

Endocrine disruptors are synthetic or natural chemicals that can agonize/antagonize hormone receptors or can interfere with the production and secretion of hormones, leading to altered tissue histology and physiology. Pyrogallol is a contaminant widely distributed in aquatic environments that presents health risks to both humans and animals. However, the potential for endocrine disruption by pyrogallol, particularly in fish, are lacking.

View Article and Find Full Text PDF

Background: Extragonadal germ cell tumors originating from the prostate are exceptionally rare. To the best of our knowledge, there have been no reported cases of mixed germ cell tumors in individuals with 46 XX disorder of sex development. In this study, we conducted a comprehensive analysis using whole genome sequencing to investigate the clinicopathological and molecular genetic characteristics of a submitted case, with the objective of elucidating its underlying pathogenesis.

View Article and Find Full Text PDF

The aim of this study was to investigate the effects of in ovo testosterone injection into the yolk sac of embryos on physiology and development of broiler chicks during the early posthatching period. A total of 1,010 hatching eggs were obtained from the Ross genotype. Trial design was conducted with a noninjected group (control) and injection groups in which 100 µL sesame oil, or 100 µL sesame oil + 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!