A novel mechanism regulating growth factor association with the cell surface: identification of a PDGF retention domain.

Genes Dev

Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892.

Published: July 1991

Platelet-derived growth factor (PDGF) chimeras were used to map a domain responsible for either efficient secretion of PDGF-A or the tight cell association of PDGF-B to their carboxy-terminal domains. Introduction of stop codons within PDGF-A or PDGF-B further dissected their respective carboxy-terminal domains. Although successive deletions of the PDGF-A carboxyl terminus did not impair its secretion, incremental deletions from the carboxyl terminus of PDGF-B abrogated its membrane retention properties and promoted secretion. By this approach, PDGF-B retention properties could be localized to PDGF-B residues 212-226. A processed form of PDGF-B, which contained this domain, was expressed at the cell surface but not released. Comparison of PDGF-B with PDGF-A revealed an analogous sequence located at the PDGF-A carboxyl terminus. We demonstrated that this PDGF-A domain also acts as a retention sequence under conditions that inhibit its proteolytic cleavage. Thus, differences in PDGF-A and PDGF-B secretion relate to differential proteolytic processing of analogous retention domains. All of these findings establish a new mechanism for stable growth factor presentation at the cell surface.

Download full-text PDF

Source
http://dx.doi.org/10.1101/gad.5.7.1191DOI Listing

Publication Analysis

Top Keywords

growth factor
12
cell surface
12
carboxyl terminus
12
pdgf-b
8
carboxy-terminal domains
8
pdgf-a pdgf-b
8
pdgf-a carboxyl
8
retention properties
8
pdgf-a
7
retention
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!