Embryonic stem (ES) cells are potent resources for cell therapy, and monoclonal antibodies (mAbs) against native cell surface markers of ES cells could be useful tools for therapeutic applications. Here, we report the development of a feasible approach, which could be used in mass production, for experimentally producing rabbit mAbs against native cell surface antigens on the cell surface. Two of the 14 mAbs, which were selected at random, could be bound to the cell surface antigens of mES cells. The immunocytochemistry (ICC) and Western blot results showed that mAb 39 recognises conformational epitopes. The target antigen of mAb 39 was then successfully purified using an improved immunoprecipitation approach in which mAb was bounded to intact mES cells before the cells were lysed. The LC-LTQ mass spectrum analysis showed that the target antigen of mAb 39 was Glut3. This result was further confirmed by Western blot using commercially available antibodies against Glut3. Further experiments showed that mAb 39 exhibited an antiproliferative effect on mES cells. We also found that Glut3 was differentially expressed among the mES cell population as detected by flow cytometry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/S1673-8527(09)60068-0 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Surface Chemistry Research Laboratory, Faculty of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
Combination therapy, which involves using multiple therapeutic modalities simultaneously or sequentially, has become a cornerstone of modern cancer treatment. Graphene-based nanomaterials (GBNs) have emerged as versatile platforms for drug delivery, gene therapy, and photothermal therapy. These materials enable a synergistic approach, improving the efficacy of treatments while reducing side effects.
View Article and Find Full Text PDFCerebellum
January 2025
Department of Neuroscience and Physiology, Grossman School of Medicine, NYU Neuroscience Institute, New York University, New York, NY, 10016, USA.
Cerebellar transcranial alternating current stimulation (ctACS) has the potential to be an appealing, non-invasive treatment option for psychiatric and neurological disorders. However, realization of this potential has been limited by gaps in our knowledge of how ctACS affects cerebellar output on single cell and population levels. Previously, we showed that AC stimulation applied to the cerebellar surface produced a strong, frequency-dependent modulation of Purkinje cell (PC) and cerebellar nuclear (CN) cell activity.
View Article and Find Full Text PDFCell Mol Neurobiol
January 2025
Neuroscience Department, International School for Advanced Studies (SISSA), Via Bonomea 265, Trieste, TS, Italy.
In clinics, physical injuries to the spinal cord cause a temporary motor areflexia below lesion, known as spinal shock. This topic is still underexplored due to the lack of preclinical spinal cord injury (SCI) models that do not use anesthesia, which would affect spinal excitability. Our innovative design considered a custom-made micro impactor that provides localized and calibrated strikes to the ventral surface of the thoracic spinal cord of the entire CNS isolated from neonatal rats.
View Article and Find Full Text PDFAppl Environ Microbiol
December 2024
Centre National de Référence des virus des gastro-entérites, Centre Hospitalier Universitaire Dijon Bourgogne, Dijon, France.
Human Aichi virus 1 (AiV-1) is a water- and food-borne infection-associated picornavirus that causes gastroenteritis in humans. Recent studies on environmental waters showed a high frequency and abundance of AiV-1, suggesting that it might be an appropriate indicator of fecal contamination. We screened 450 surface and drinking water samples from a Tunisian drinking water treatment plant (DWTP) and the Sidi Salem dam for AiV-1 by real time reverse transcriptase PCR (RT-qPCR).
View Article and Find Full Text PDFAppl Environ Microbiol
December 2024
Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China.
In confronting the significant challenge posed by multidrug-resistant (MDR) pathogens, particularly methicillin-resistant (MRSA), the development of innovative anti-infective strategies is essential. Our research focuses on sortase A (SrtA), a vital enzyme for anchoring surface proteins in . We discovered that plantamajoside (PMS), a phenylpropanoid glycoside extracted from .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!