AI Article Synopsis

Article Abstract

Spinal muscular atrophy (SMA) is an autosomal recessive disease caused in about 95% of SMA patients by homozygous deletion of the survival motor neuron 1 (SMN1) gene or its conversion to the highly homologous SMN2 gene. In the majority of cases, disease severity correlates inversely with increased SMN2 copy number. Because of the comparatively high incidence of healthy carriers and severity of the disease, detection of sequence alterations and quantification of SMN1 and SMN2 copy numbers are essential for exact diagnosis and genetic counselling. Several assays have been developed for this purpose. Multiplex ligation-dependent probe amplification (MLPA) is a versatile technique for relative quantification of different nucleic acid sequences in a single reaction. Here, we establish a quick MLPA-based assay for the detection of SMN1 and SMN2 copy numbers with high specificity and low complexity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mcp.2010.07.001DOI Listing

Publication Analysis

Top Keywords

smn2 copy
16
smn1 smn2
12
copy numbers
12
quantification smn1
8
smn2
5
quick mlpa
4
mlpa test
4
test quantification
4
smn1
4
copy
4

Similar Publications

Background: Most cases of spinal muscular atrophy (SMA) can be diagnosed by copy number analysis of survival motor neuron (SMN) 1. However, a small number of cases of SMA can only be diagnosed by sequencing analysis. We present a case of SMA diagnosed 7 years after the onset of symptoms.

View Article and Find Full Text PDF

Spinal muscular atrophy (SMA) is a degenerative neuromuscular condition resulting from a homozygous deletion of the survival motor neuron 1 () gene in 95% of patients. A timely diagnosis via newborn screening (NBS) and initiating treatment before the onset of symptoms are critical for improving health outcomes in affected individuals. We carried out a screening test by quantitative PCR (qPCR) to amplify the exon seven of using dried blood spot (DBS) samples.

View Article and Find Full Text PDF

A cross-sectional and longitudinal evaluation of serum creatinine as a biomarker in spinal muscular atrophy.

Orphanet J Rare Dis

December 2024

Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei province, China.

Objective: Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disease characterized by proximal muscle weakness and atrophy. The increasing availability of disease-modifying therapies has prompted the development of biomarkers to facilitate clinical assessments. We explored the association between disease severity and serum creatinine (Crn) levels in SMA patients undergoing up to two years of treatment with nusinersen.

View Article and Find Full Text PDF

Introduction: Fatigue and gait speed are established determinants of fall risk in patients with neurological disorders. However, data on adults with spinal muscular atrophy (SMA) is limited. The aim of this pilot study was to investigate falls and risk factors in adults with SMA.

View Article and Find Full Text PDF

[Natural history of spinal muscular atrophy type I].

Zh Nevrol Psikhiatr Im S S Korsakova

December 2024

JSC BIOCAD, St. Petersburg, Russia.

Spinal muscular atrophy (SMA) is a group of genetically heterogeneous neuromuscular diseases characterized by the progressive loss of motor neurons in the anterior horns of the spinal cord. The prevalence of SMA is approximately 1 in 10.000 live births.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!