SH3 domains function as protein-protein interaction modules in assembly of signalling and endocytic protein complexes. Here we report investigations of the mechanism of regulation of the binding properties of the SH3 domains of intersectin (ITSN1) and Src kinase by alternative splicing. Comparative sequence analysis of ITSN1 and Src genes revealed the conservation of alternatively spliced microexons affecting the structure of the SH3 domains in vertebrates. We show that neuron-specific ITSN1 transcripts containing the microexon 20 that encodes five amino acid residues within the SH3A domain are expressed in zebrafish from the earliest stages of the development of the nervous system. Models of alternative isoforms of the ITSN1 SH3A domain revealed that the insertion encoded by the microexon is located at the beginning of the n-Src loop of this domain causing a shift of negatively charged amino acids towards the interaction interface. Mutational analysis confirmed the importance of translocation of these negatively charged amino acids for interaction with dynamin 1. We also identified a residue within the microexon-encoded insert in the SH3 domain of brain-specific variant of Src that abolishes interaction of the domain with dynamin 1. Thus microexons provide a mechanism for the control of tissue-specific interactions of ITSN1 and Src with their partners.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2010.07.080 | DOI Listing |
PLoS One
January 2024
Behavioural Neuroscience Laboratory, Department of Animal Science, Bharathidasan University, Tiruchirappalli, India.
Environmental enrichment (EE) through combination of social and non-biological stimuli enhances activity-dependent synaptic plasticity and improves behavioural performance. Our earlier studies have suggested that EE resilience the stress induced depression/ anxiety-like behaviour in Indian field mice Mus booduga. This study was designed to test whether EE reverses the social isolation (SI) induced effect and improve memory.
View Article and Find Full Text PDFCell Death Dis
October 2021
Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.
Breast cancer is the most common type of cancer worldwide. However, the well-known molecular biomarkers are not enough to meet the needs of precision medicine. In search for novel targets in this regard, we reported ITSN1 (intersectin1) as one of the candidates through mRNA microarray analysis.
View Article and Find Full Text PDFCell Mol Life Sci
February 2021
SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, 91025, Evry, France.
SAM68 is an mRNA-binding protein involved in mRNA processing in the nucleus that forms membraneless compartments called SAM68 Nuclear Bodies (SNBs). We found that intersectin 1 (ITSN1), a multidomain scaffold protein harboring five soluble SH3 domains, interacts with SAM68 proline-rich motifs (PRMs) surrounded by self-adhesive low complexity domains. While SAM68 is poorly soluble in vitro, the interaction of ITSN1 SH3 domains and mRNA with SAM68 enhances its solubility.
View Article and Find Full Text PDFCell
July 2018
MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK. Electronic address:
Multiple proteins act co-operatively in mammalian clathrin-mediated endocytosis (CME) to generate endocytic vesicles from the plasma membrane. The principles controlling the activation and organization of the actin cytoskeleton during mammalian CME are, however, not fully understood. Here, we show that the protein FCHSD2 is a major activator of actin polymerization during CME.
View Article and Find Full Text PDFBiochem J
April 2018
Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
Intersectin 1-short (ITSN1-s) is a 1220 amino acid ubiquitously expressed scaffold protein presenting a multidomain structure that allows to spatiotemporally regulate the functional interaction of a plethora of proteins. Besides its well-established role in endocytosis, ITSN1-s is involved in the regulation of cell signaling and is implicated in tumorigenesis processes, although the signaling pathways involved are still poorly understood. Here, we identify ITSN1-s as a nucleocytoplasmic trafficking protein.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!