Genome copy number changes (copy number variations: CNVs) include inherited, de novo and somatically acquired deviations from a diploid state within a particular chromosomal segment. CNVs are frequent in higher eukaryotes and associated with a substantial portion of inherited and acquired risk for various human diseases. CNVs are distributed widely in the genomes of apparently healthy individuals and thus constitute significant amounts of population-based genomic variation. Human CNV loci are enriched for immune genes and one of the most striking examples of CNV in humans involves a genomic region containing the chemokine genes CCL3L and CCL4L. The CCL3L-CCL4L copy number variable region (CNVR) shows extensive architectural complexity, with smaller CNVs within the larger ones and with interindividual variation in breakpoints. Furthermore, the individual genes embedded in this CNVR account for an additional level of genetic and mRNA complexity: CCL4L1 and CCL4L2 have identical exonic sequences but produce a different pattern of mRNAs. CCL3L2 was considered previously as a CCL3L1 pseudogene, but is actually transcribed. Since 2005, CCL3L-CCL4L CNV has been associated extensively with various human immunodeficiency virus-related outcomes, but some recent studies called these associations into question. This controversy may be due in part to the differences in alternative methods for quantifying gene copy number and differentiating the individual genes. This review summarizes and discusses the current knowledge about CCL3L-CCL4L CNV and points out that elucidating their complete phenotypic impact requires dissecting the combinatorial genomic complexity posed by various proportions of distinct CCL3L and CCL4L genes among individuals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2990928 | PMC |
http://dx.doi.org/10.1111/j.1365-2249.2010.04224.x | DOI Listing |
Front Immunol
January 2025
Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
Background: The Arp2/3 complex is a key regulator of tumor metastasis, and targeting its subunits offers potential for anti-metastatic therapy. However, the expression profiles, prognostic relevance, and diagnostic value of its subunits across cancers remain poorly understood. This study aims to investigate the clinical relevance of Arp2/3 complex subunits, particularly ARPC1A, in pan-cancer, and to further analyze the potential biological mechanisms of ARPC1A, as well as its association with immune infiltration and chemotherapy drug sensitivity.
View Article and Find Full Text PDFOnco Targets Ther
January 2025
Department of Gynecology, Sichuan Provincial Hospital of Traditional Chinese Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People's Republic of China.
Background: Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-mediated membrane fusion is crucial for autophagy, making YKT6, a key modulator of cell membrane fusion, a potential target for cancer therapy. However, its oncogenic role across different cancers remains unclear. This study was to investigate the prognostic value and potential immunological functions of YKT6, including cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC).
View Article and Find Full Text PDFHealth Sci Rep
January 2025
Medical Oncology Healthcare Global Bangalore India.
Background And Aims: Sensitivity to immune checkpoint inhibitor (ICI) therapy depends in part on the genetic and epigenetic makeup of cancer cells, and CD8 T-lymphocytes that mediate immune responses. Epigenetics are heritable reversible changes in gene expression that occur without any changes in the nuclear DNA sequence or DNA copy number.
Primary Objective: i.
Mol Ther Methods Clin Dev
March 2025
Department of Medicine, Division of Infectious Diseases, Mayo Clinic, Rochester, MN 55902, USA.
Lipid nanoparticles (LNPs) are often liver tropic, presenting challenges for LNP-delivered mRNA therapeutics intended for other tissues, as off-target expression in the liver may increase side effects and modulate immune responses. To avoid off-target expression in the liver, miR-122 binding sites have been used by others in viral and non-viral therapeutics. Here, we use a luciferase reporter system to compare different copy numbers and insertion locations of miR-122 binding sequences to restrict liver expression.
View Article and Find Full Text PDFElucidating the genetic contributions to Parkinson's disease (PD) etiology across diverse ancestries is a critical priority for the development of targeted therapies in a global context. We conducted the largest sequencing characterization of potentially disease-causing, protein-altering and splicing mutations in 710 cases and 11,827 controls from genetically predicted African or African admixed ancestries. We explored copy number variants (CNVs) and runs of homozygosity (ROHs) in prioritized early onset and familial cases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!