The design of an unprecedented multicomponent reaction to and synthesis of 2-amino-5-ketoaryl pyrroles are described. The compounds (14 examples) can be synthesized by reacting aminoacetophenone sulfonamides, (hetero)aromatic aldehydes, and malonodinitrile or cyanoacetic acid derivatives in one-pot manner. Pharmacophore features and potential applications of this new scaffold are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1747-0285.2009.00942.x | DOI Listing |
RSC Adv
January 2025
Department of Organic Chemistry, Faculty of Chemistry Urmia University Urmia Iran.
Benzo-fused γ-lactams are fundamental in medicinal chemistry, acting as essential elements for various therapeutic agents due to their structural adaptability and capability to enhance biological activity. In their synthesis, transition metals play a pivotal role as catalysts, offering more efficient alternatives to traditional methods by facilitating C-N bond formation through mechanisms like intramolecular coupling. Recent advances have especially spotlighted transition-metal-catalyzed C-H amination reactions for directly converting C(sp)-H to C(sp)-N bonds, streamlining the creation of these compounds.
View Article and Find Full Text PDFACS Cent Sci
January 2025
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
Multicomponent reactions (MCRs), highly sought-after methods to produce atom-, step-, and energy-economic organic syntheses, have been developed extensively. However, catalytic asymmetric MCRs, especially those involving radical species, remain largely unexplored owing to the difficulty in stereoselectively regulating the extraordinarily high reactivity of open-shell radical species. Herein, we report a conceptually novel catalytic asymmetric three-component radical cascade reaction of readily accessible glycine esters, α-bromo carbonyl compounds and 2-vinylcyclopropyl ketones via synergistic photoredox/Brønsted acid catalysis, in which three sequential C-C (σ/π/σ) bond-forming events occurred through a radical addition/ring-opening/radical-radical coupling protocol, affording an array of valuable enantioenriched unnatural α-amino acid derivatives bearing two contiguous stereogenic centers and an alkene moiety in moderate to good yield with high diastereoselectivity, excellent enantioselectivity and good -dominated geometry under mild reaction conditions.
View Article and Find Full Text PDFSmall
January 2025
Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
Covalent organic frameworks (COFs), known for the precise tunability of molecular structures, hold significant promise for photocatalytic hydrogen peroxide (HO) production. Herein, by systematically altering the quinoline (QN) linkages in triazine (TA)-based COFs via the multi-component reactions, six R-QN-TA-COFs are synthesized with identical skeletons but different substituents. The fine-tuning of the optoelectronic properties and local microenvironment of COFs is allowed, thereby optimizing charge separation and improving interactions with dissolved oxygen.
View Article and Find Full Text PDFTop Curr Chem (Cham)
January 2025
Department of Chemistry, Yashavantrao Chavan Institute of Science, Lead College, Karmaveer Bhaurao Patil University, Satara, Maharashtra, 415001, India.
The Petasis reaction has introduced significant advancements through the use of various catalysts, solvents, methodologies, and substrates in diverse areas of chemistry, including medicinal, organic, combinatorial, biochemical, and heterocyclic chemistry. It is a prominent method for synthesizing compounds such as α-amino acids, β-amino alcohols, Aza-beta-lactams, alkylaminophenols, α-arylglycines, 2H-chromenes, aminophenols, and hydrazide alcohols. With the increasing demand for medicines, drugs, industrial products, insecticides, and pesticides, the Petasis reaction has become an indispensable and versatile tool.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Chemistry, Faculty of Basic Sciences, Ilam University, P.O. Box 69315516, Ilam, Iran.
This study highlights an innovative approach to catalysis by utilizing natural asphalt as a support material for developing carbon-based catalysts. By leveraging the principles of green chemistry, the research aims to create recyclable and environmentally friendly heterogeneous catalytic systems. This aligns with the growing demand for greener technologies and the use of biocompatible materials in chemical processes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!