3' Uridylation and the regulation of RNA function in the cytoplasm.

Biochem Soc Trans

Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.

Published: August 2010

Degradation of cytoplasmic mRNAs is an important aspect of the regulation of gene function in eukaryotes. Much of what is currently known about the underlying pathways of mRNA decay is derived from studies of the budding yeast Saccharomyces cerevisiae, in which mRNA turnover is initiated by deadenylation, followed either by decapping and 5'-->3' degradation or by further 3'-->5' exonucleolysis. Our studies using RNA cRACE (circularization-based rapid amplification of cDNA ends) techniques indicate that mRNA decapping in the fission yeast Schizosaccharomyces pombe often does not require prior deadenylation. Furthermore, the poly(A) polymerase-related, cytoplasmic enzyme Cid1 catalyses uridylation of a variety of functionally diverse poly(A)(+) mRNAs and hence stimulates decapping as part of a novel mRNA turnover pathway. The pathways initiated by uridylation and deadenylation stimulate decapping in a partially redundant fashion, but urg1 mRNA is stabilized in mutants lacking cid1. Accumulation of uridylated RNAs in an lsm1 mutant suggests an involvement of the Lsm1-7 complex in recognition of the 3' uridylation tag and recruitment of the decapping machinery. Recent reports from other groups suggest that in metazoans, which unlike budding yeast contain Cid1 orthologues, 3' uridylation by such enzymes is used to regulate miRNA (microRNA) and siRNA (small interfering RNA) biogenesis and activity. It has further been suggested that uridylation is an important regulatory modification of non-polyadenylated replication-dependent histone mRNAs. This modification may also form the basis of a widespread mechanism for the initiation of the decay of polyadenylated mRNAs in organisms other than fission yeast.

Download full-text PDF

Source
http://dx.doi.org/10.1042/BST0381150DOI Listing

Publication Analysis

Top Keywords

budding yeast
8
mrna turnover
8
fission yeast
8
uridylation
6
mrna
5
decapping
5
uridylation regulation
4
regulation rna
4
rna function
4
function cytoplasm
4

Similar Publications

Today, is still the most common cause of both local and life-threatening systemic candidiasis. The spread of resistant fungal strains has resulted in an urgent need to search for new promising antimycotics. Here, we investigated the antifungal action of the tobacco defensin NaD1 against susceptible and resistant to azoles and echinocandins strains of .

View Article and Find Full Text PDF

species constitute the most common cause of fungal infections in humans; the emergence of resistance and biofilm formation by species further threaten the limited availability of antifungal agents. Over the past decade, . has caused significant outbreaks worldwide and has emerged as a human pathogenic fungus that causes diseases ranging from superficial to life-threatening disseminated infections.

View Article and Find Full Text PDF

This study investigates the impact of key factors on the formation of odorants and sensory properties in mead. The effects of the honey type (acacia, buckwheat, linden), wort heating, and the fermentation method (commercial yeasts, spontaneous fermentation, molds) were examined. Twelve model mead batches were produced, matured for 12 months, and analyzed using gas chromatography-olfactometry (GC-O) and headspace SPME-GC/MS to identify odor-active compounds.

View Article and Find Full Text PDF

Optimizing Yeast Homologous Recombination for Splicing Large Coronavirus Genome Fragments.

Int J Mol Sci

December 2024

Academy of Military Medical Sciences, Beijing 100850, China.

Reverse genetics is a useful tool for studying viruses and developing vaccines for coronaviruses. However, constructing and manipulating the coronavirus genome in can be time-consuming and challenging due to its large size and instability. Homologous recombination, a genetic manipulation mechanism found in organisms, is essential for DNA repair, gene recombination, and genetic engineering.

View Article and Find Full Text PDF

Bgl2p is a major, conservative, constitutive glucanosyltransglycosylase of the yeast cell wall (CW) with amyloid amino acid sequences, strongly non-covalently anchored in CW, but is able to leave it. In the environment, Bgl2p can form fibrils and/or participate in biofilm formation. Despite a long study, the question of how Bgl2p is anchored in CW remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!