hESCs (human embryonic stem cells) offer great potential for pharmaceutical research and development and, potentially, for therapeutic use. However, improvements in cell culture are urgently required to allow the scalable production of large numbers of cells that maintain pluripotency. Supplementing feeder-free conditions with either EHNA [erythro-9-(2-hydroxy-3-nonyl)adenine] or readily synthesized analogues of this compound maintains hESC pluripotency in the absence of exogenous cytokines. When the hESC lines SA121 or SA461 were maintained in feeder-free conditions with EHNA they displayed no reduction in stem-cell-associated markers such as Nanog, Oct4 (octamer-binding protein 4) and SSEA4 (stage-specific embryonic antigen 4) when compared with cells maintained in full feeder-free conditions that included exogenously added bFGF (basic fibroblast growth factor). Spontaneous differentiation was reversibly suppressed by the addition of EHNA, but EHNA did not limit efficient spontaneous or directed differentiation following its removal. We conclude that EHNA or related compounds offers a viable alternative to exogenous cytokine addition in maintaining hESC cultures in a pluripotent state and might be a particularly useful replacement for bFGF for large-scale or GMP (good manufacturing practice)-compliant processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1042/BST0381058 | DOI Listing |
J Vis Exp
November 2024
Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University; Zayed Center for Health Sciences, United Arab Emirates University; ASPIRE Precision Medicine Research Institute Abu Dhabi (PMRI-AD), United Arab Emirates University;
The CRISPR-Cas9 system for genome editing has revolutionized gene function studies in mammalian cells, including stem cells. However, the practical application of this technique, particularly in pluripotent stem cells, presents certain challenges, such as being time- and labor-intensive and having low editing efficiency. Here, we describe the generation of a CRISPR-mediated gene knockout in a human embryonic stem cell (hESC) line stably expressing sgRNAs for the L2HGDH gene, using a highly efficient and stable lentiviral-mediated gene delivery system.
View Article and Find Full Text PDFStem Cell Res
December 2024
Medical Life Sciences Institute, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand. Electronic address:
Hematopoietic stem cell isolated from a healthy 39-year-old woman were successfully reprogrammed and transformed into induced pluripotent stem cell (iPSCs) by using the integration-free episomal vector included OCT3/4/shp53, Sox2/KLF4, L-MYC/LIN28 and EBNA-1 reprogramming factors. The transformed iPSC lines were cultured and expanded under feeder-free condition. They demonstrated the normal karyotype, expressed pluripotency markers and differentiated into cells derived from the three germ layers.
View Article and Find Full Text PDFFront Immunol
October 2024
Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche en Santé (UMR-S-1310), Villejuif, France.
Purpose: The ability to generate natural killer (NK) cells from induced pluripotent stem cells (iPSCs) has given rise to new possibilities for the large-scale production of homogeneous immunotherapeutic cellular products and opened new avenues towards the creation of "off-the-shelf" cancer immunotherapies. However, the differentiation of NK cells from iPSCs remains poorly understood, particularly regarding the ontogenic landscape of iPSC-derived NK (iNK) cells produced and the influence that the differentiation strategy employed may have on the iNK profile.
Methods: To investigate this question, we conducted a comparative analysis of two sets of iNK cells generated from the same iPSC line using two different protocols: (i) a short-term, clinically compatible feeder-free protocol corresponding to primitive hematopoiesis, and (ii) a lymphoid-based protocol representing the definitive hematopoietic step.
Regen Ther
June 2024
Department of Advanced Pathobiology, Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano, Osaka 598-8531, Japan.
Companion animals, such as felines and canines, could provide an excellent platform for translational research from veterinary to human medicine. However, the use of feline induced pluripotent stems (fiPSCs) of quality in basic or clinical research has not been reported. Here, we generated footprint-free fiPSCs derived from embryonic cells, as well as juvenile feline uterus-derived cells using Sendai virus vector harboring six feline-specific pluripotency-associated genes.
View Article and Find Full Text PDFJ Vis Exp
August 2024
Biologic and Radiopharmaceutical Drugs Directorate; Department of Biochemistry, Microbiology and Immunology Institute, University of Ottawa;
Natural killer cell-derived extracellular vesicles (NK-EVs) are being investigated as cancer biotherapeutics. They possess unique properties as cytotoxic nanovesicles targeting cancer cells and as immunomodulatory communicators. A scalable biomanufacturing workflow enables the production of large quantities of high-purity NK-EVs to meet the pre-clinical and clinical demands.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!