Low-volume resistance exercise attenuates the decline in strength and muscle mass associated with immobilization.

Muscle Nerve

Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada.

Published: October 2010

We determined the effectiveness of low-volume resistance exercise (EX) for the attenuation of loss of muscle mass and strength during leg immobilization. Men (N = 5) and women (N = 12, age 24 ± 5 years, body mass index 25.4 ± 3.6 kg/m(2)) were divided into two groups: exercise (EX; n = 12) and control (CON; n = 5). Subjects wore a knee brace on one leg that prevented weight bearing for 14 days. Resistance exercise (EX; 80% of maximal) was performed by the immobilized limb every other day. Immobilization induced a significant reduction (P < 0.05) in muscle fiber and thigh cross-sectional area (CSA), isometric knee extensor, and plantarflexor strength in the CON (P < 0.01) but not in the EX group. There were significant losses in triceps surae CSA in the CON and EX groups (P < 0.05), but the losses were greater in CON subjects (P < 0.01). A minimal volume (140 contractions in 14 days) of resistive exercise is an effective countermeasure against immobilization-induced atrophy of the quadriceps femoris but is only partially effective for the triceps surae.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mus.21721DOI Listing

Publication Analysis

Top Keywords

resistance exercise
12
low-volume resistance
8
muscle mass
8
con subjects
8
triceps surae
8
exercise
5
exercise attenuates
4
attenuates decline
4
decline strength
4
strength muscle
4

Similar Publications

Background: In skilled nursing facilities (SNFs), i-STRONGER is a novel, high-intensity resistance training approach that incorporates progressive resistance training to promote greater improvements in patient function compared to usual care. To inform large-scale expansion of i-STRONGER as standard-of-care in SNFs, this mixed-methods study assessed rehabilitation providers' perceptions of i-STRONGER and purported needs for its adoption.

Methods: Forty-three rehabilitation providers participated in an 18-week, interactive i-STRONGER training program.

View Article and Find Full Text PDF

Passive dehydration reduces muscle thickness after resistance exercise.

J Sports Sci

January 2025

Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, USA.

Unlabelled: Dehydration-induced increased plasma osmolality (P) alters whole body fluid balance which could alter resistance exercise (RE) induced intramuscular (IM) fluid shift.

Purpose: The purpose of the current report was to investigate the effect of dehydration on RE-induced change in whole body fluid balance in resistance trained (RT) men.

Methods: Fourteen RT men performed two identical RE sessions, either in a hydrated (EUHY) or dehydrated (DEHY) state induced by a 24 hr fluid restriction.

View Article and Find Full Text PDF

Lipedema is characterized by abnormal fat deposition in areas such as the arms, hips, buttocks, and thighs, sparing the hands and feet. Symptoms include pain, bruising, edema, and subcutaneous nodules, which resist traditional interventions such as diet and exercise. Despite increasing recognition, comprehensive understanding, including pathophysiological, clinical, and therapeutic aspects, has not been fully achieved.

View Article and Find Full Text PDF

5-Hydroxyindoleacetic acid (5-HIAA), a vital metabolite of serotonin (5-HT), is crucial for understanding metabolic pathways and is implicated in various mental disorders. In situ monitoring of 5-HIAA is challenging due to the lack of affinity ligands and issues with electrochemical fouling. We present an advanced sensing approach that integrates customizable molecular imprinting polymer (MIP) with self-driven galvanic redox potentiometry (GRP) for precise, real-time in vivo monitoring of 5-HIAA.

View Article and Find Full Text PDF

According to epidemiological studies, diabetes is more common in patients with AD, which suggests that diabetes is a significant risk factor for AD. Accelerating brain cell degeneration, worsening cognitive decline, and increasing susceptibility to AD can be attributed to pathogenic mechanisms linked to diabetes, such as impaired insulin signaling in the brain, neuroinflammation, oxidative stress, mitochondrial dysfunction, and vascular impairment. These factors can also lead to the accumulation of β-amyloid and tau protein phosphorylation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!