Fas stimulation has been reported to promote the activation and proliferation of T lymphocytes, but the intracellular signalling pathways that mediate non-apoptotic responses to Fas are poorly defined. To distinguish between the activation signalling and the death-inducing pathway downstream of Fas, we generated a novel T cell line expressing a chimeric hCD8-FasC protein and found that stimulation with the anti-CD8 antibodies induced tyrosine phosphorylation of TCR-proximal proteins, activation of Raf-1/ERK, p38 and JNK, and increased expression of CD69, Fas, and Fas ligand. Stimulation of hCD8-FasC-induced activation of an atypical NF-kappaB pathway, partial cleavage of caspases, and increased expression of TRAF1, FLIP(L) and FLIP(S), thereby protecting T cells from FasL-mediated apoptosis. The proliferative response transmitted through hCD8-FasC chimeric receptors was converted into death signals when cells were stimulated, resulting in increased expression of IL-2 and Nur77 and increased caspase cleavage. Surprisingly, both the enhanced expression of FLIP(L) and FLIP(S) and the complete inhibition of FLIP(S) expression were functionally associated with cell death induction. These findings imply that Fas is able to trigger intracellular signalling events driving both apoptosis and activation of T cells but that cell fate is determined by quantitative and qualitative differences in intracellular signalling following Fas stimulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12185-010-0637-2 | DOI Listing |
BMC Neurosci
January 2025
Department of Operative Dentistry and Periodontology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany.
Background: Parkinson's disease (PD) is a neurodegenerative disorder characterized by protein aggregates mostly consisting of misfolded alpha-synuclein (αSyn). Progressive degeneration of midbrain dopaminergic neurons (mDANs) and nigrostriatal projections results in severe motor symptoms. While the preferential loss of mDANs has not been fully understood yet, the cell type-specific vulnerability has been linked to a unique intracellular milieu, influenced by dopamine metabolism, high demand for mitochondrial activity, and increased level of oxidative stress (OS).
View Article and Find Full Text PDFCommun Biol
January 2025
Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
Stalled ribosomes cause collisions, impair protein synthesis, and generate potentially harmful truncated polypeptides. Eukaryotic cells utilize the ribosome-associated quality control (RQC) and no-go mRNA decay (NGD) pathways to resolve these problems. In yeast, the E3 ubiquitin ligase Hel2 recognizes and polyubiquitinates disomes and trisomes at the 40S ribosomal protein Rps20/uS10, thereby priming ribosomes for further steps in the RQC/NGD pathways.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, USA.
Liver x receptor alpha (LXRα) functions as an intracellular cholesterol sensor that regulates lipid metabolism at the transcriptional level in response to the direct binding of cholesterol derivatives. We have generated mice with a mutation in LXRα that reduces activity in response to endogenous cholesterol derived LXR ligands while still allowing transcriptional activation by synthetic agonists. The mutant LXRα functions as a dominant negative that shuts down cholesterol sensing.
View Article and Find Full Text PDFNat Commun
January 2025
School of Life Sciences, BK21 FOUR KNU Creative BioRearch Group, Kyungpook National University, Daegu, South Korea.
Lysophagy eliminates damaged lysosomes and is crucial to cellular homeostasis; however, its underlying mechanisms are not entirely understood. We screen a ubiquitination-related compound library and determine that the substrate recognition component of the SCF-type E3 ubiquitin ligase complex, SCF(FBXO3), which is a critical lysophagy regulator. Inhibition of FBXO3 reduces lysophagy and lysophagic flux in response to L-leucyl-L-leucine methyl ester (LLOMe).
View Article and Find Full Text PDFOpen Biol
January 2025
Department of Epigenetics, Medical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan.
Retrotransposon Gag-like (RTL) 8A, 8B and 8C are eutherian-specific genes derived from a certain retrovirus. They cluster as a triplet of genes on the X chromosome, but their function remains unknown. Here, we demonstrate that and play important roles in the brain: their double knockout (DKO) mice not only exhibit reduced social responses and increased apathy-like behaviour, but also become obese from young adulthood, similar to patients with late Prader-Willi syndrome (PWS), a neurodevelopmental genomic imprinting disorder.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!