Background: If biofuels are to be a viable substitute for fossil fuels, it is essential that they retain their potential to mitigate climate change under future atmospheric conditions. Elevated atmospheric CO2 concentration [CO2] stimulates plant biomass production; however, the beneficial effects of increased production may be offset by higher energy costs in crop management.

Methodology/main Findings: We maintained full size poplar short rotation coppice (SRC) systems under both current ambient and future elevated [CO2] (550 ppm) and estimated their net energy and greenhouse gas balance. We show that a poplar SRC system is energy efficient and produces more energy than required for coppice management. Even more, elevated [CO2] will increase the net energy production and greenhouse gas balance of a SRC system with 18%. Managing the trees in shorter rotation cycles (i.e., 2 year cycles instead of 3 year cycles) will further enhance the benefits from elevated [CO2] on both the net energy and greenhouse gas balance.

Conclusions/significance: Adapting coppice management to the future atmospheric [CO2] is necessary to fully benefit from the climate mitigation potential of bio-energy systems. Further, a future increase in potential biomass production due to elevated [CO2] outweighs the increased production costs resulting in a northward extension of the area where SRC is greenhouse gas neutral. Currently, the main part of the European terrestrial carbon sink is found in forest biomass and attributed to harvesting less than the annual growth in wood. Because SRC is intensively managed, with a higher turnover in wood production than conventional forest, northward expansion of SRC is likely to erode the European terrestrial carbon sink.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2906505PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0011648PLOS

Publication Analysis

Top Keywords

elevated [co2]
16
greenhouse gas
16
net energy
12
mitigation potential
8
future atmospheric
8
biomass production
8
increased production
8
energy greenhouse
8
gas balance
8
src system
8

Similar Publications

MTHFR C677T rs1801133 and TP53 Pro72Arg rs1042522 gene variants in South African Indian and Caucasian psoriatic arthritis patients.

Genet Mol Biol

January 2025

University of KwaZulu-Natal, Howard College, College of Health Sciences, School of Laboratory Medicine and Medical Sciences, Department of Medical Biochemistry, Durban, South Africa.

Methylenetetrahydrofolate reductase (MTHFR) gene is involved in homocysteine and folic acid metabolism. Tumour suppressor protein TP53 gene maintains cellular and genetic integrity. To date, no studies associated the MTHFR C677T rs1801133 and TP53 Pro72Arg rs1042522 with CRP levels and methotrexate (a folic acid antagonist) treatment outcomes in psoriatic arthritis (PsA) patients.

View Article and Find Full Text PDF

Air pollution and breast cancer risk: a Mendelian randomization study.

Int J Environ Health Res

January 2025

Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.

Previous research yields inconsistent findings on the association between air pollution and breast cancer risk, with no definitive causal relationship established. To address this, we conducted a two-sample Mendelian randomization study on data from the IEU open GWAS databases and the Breast Cancer Association Consortium to explore the potential link between air pollution (including PM, PM absorbance, PM, PM, NO, and NO) and breast cancer risk. We found that PM (odds ratio (OR) = 1.

View Article and Find Full Text PDF

Objective: Carbohydrate antigen 19-9 (CA19-9) and carcinoembryonic antigen (CEA) serve as pivotal tumor markers in colorectal cancer (CRC). However, uncertainty persists regarding the prognostic significance of the two tumor markers when falling within the normal range. We attempt to compare the prognostic differences of tumor markers at different levels within the reference range.

View Article and Find Full Text PDF

Radon Exposure and Gestational Diabetes.

JAMA Netw Open

January 2025

Department of Obstetrics and Gynecology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York.

Importance: Understanding environmental risk factors for gestational diabetes (GD) is crucial for developing preventive strategies and improving pregnancy outcomes.

Objective: To examine the association of county-level radon exposure with GD risk in pregnant individuals.

Design, Setting, And Participants: This multicenter, population-based cohort study used data from the Nulliparous Pregnancy Outcomes Study: Monitoring Mothers-to-Be (nuMoM2b) cohort, which recruited nulliparous pregnant participants from 8 US clinical centers between October 2010 and September 2013.

View Article and Find Full Text PDF

IP6K1 rewires LKB1 signaling to mediate hyperglycemic endothelial senescence.

Diabetes

January 2025

Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.

Diabetes is a major risk factor for cardiovascular disease, but the molecular mechanisms underlying diabetic vasculopathy have been elusive. Here we report that inositol hexakisphosphate kinase 1 (IP6K1) mediates hyperglycemia-induced endothelial senescence by rewiring the liver kinase B1 (LKB1) signaling from activating the adenosine monophosphate-activated protein kinase (AMPK) pathway to the p53 pathway. We found that hyperglycemia upregulated IP6K1, which disrupts the Hsp/Hsc70 and carboxyl terminus of Hsc70-interacting protein (CHIP)-mediated LKB1 degradation, leading to increased expression levels of LKB1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!