Caulobacter crescentus exhibits a hexagonally arranged protein layer on its outermost surface. RsaA, the sole protein of this "S-layer", is secreted by a type I (ABC) transporter. Few type I transporters show high-level secretion, and few bacterial S-layers have been carefully examined for the amount of protein synthesis capacity needed to maintain cell coverage. Here we determined RsaA levels by quantitative immunoblotting methods, learned that very stable mRNA is a key factor in high-level secretion, and found that the transporter was capable of still higher secretion. A propensity for RsaA to aggregate was a barrier to quantitation, but with the use of S-layer shedding mutants and methods to keep RsaA soluble, we learned that approximately 31% of cell protein is RsaA. When multiple copies of rsaA were introduced, the level increased to approximately 51% of cell protein, a higher level than we are aware of for any protein in any bacterium. Unexpectedly, in comparing normal and S-layer shedding strains, an assembled S-layer was not a significant barrier to elevated secretion. The rsaA mRNA half-life was determined by real-time PCR to be 36 min, ranking with the most stable known in bacteria. A modification of the 5' region resulted in a shorter half-life and a reduction in maximum protein synthesis levels. If secretion was prevented by knockout of type I transporter genes, RsaA levels dropped to 10% or less of normal, but with no significant reduction in rsaA mRNA. Overall, normal levels of RsaA were unexpectedly high, and still higher levels were not limited by transporter capability, the presence of an assembled S-layer, or the capacity of the cell's physiology to produce large amounts of one protein. The normal upper limit of RsaA production appears to be controlled only by the level of an unusually stable message. Significant down-regulation is possible and is accomplished posttranscriptionally.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1139/w10-036 | DOI Listing |
Front Bioeng Biotechnol
January 2025
Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada.
Introduction: Validated models describing the biomechanics of tooth extraction are scarce. This study seeks to perform experimental and numerical characterization of vertical tooth extraction biomechanics in swine incisors with imposed vertical extraction loads. Imaging analysis related mechanical outcomes to tooth geometry and applied loading rate.
View Article and Find Full Text PDFAppl Environ Microbiol
December 2024
Biology Department, San Diego State University, San Diego, California, USA.
Unlabelled: Many species of proteobacterial methane-consuming bacteria (methanotrophs) form a hauberk-like envelope represented by a surface (S-) layer protein (SLP) matrix. While several proteins were predicted to be associated with the cell surface, the composition and function of the hauberk matrix remained elusive. Here, we report the identification of the genes encoding the hauberk-forming proteins in two gamma-proteobacterial (Type I) methanotrophs, 5GB1 (EQU24_15540) and 20Z (MEALZ_0971 and MEALZ_0972).
View Article and Find Full Text PDFSci Rep
September 2024
Hunan University of Medicine General Hospital, Huaihua, 418000, China.
The analysis and interpretation of cytopathological images are crucial in modern medical diagnostics. However, manually locating and identifying relevant cells from the vast amount of image data can be a daunting task. This challenge is particularly pronounced in developing countries where there may be a shortage of medical expertise to handle such tasks.
View Article and Find Full Text PDFOrphanet J Rare Dis
August 2024
Anavex Life Sciences Corp, New York, NY, USA.
Mol Cell Proteomics
December 2023
Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico, USA. Electronic address:
The ability of an organism to respond to environmental changes is paramount to survival across a range of conditions. The bacterial heme nitric oxide/oxygen binding proteins (H-NOX) are a family of biofilm-regulating gas sensors that enable bacteria to respond accordingly to the cytotoxic molecule nitric oxide. By interacting with downstream signaling partners, H-NOX regulates the production of the bacterial secondary messenger cyclic diguanylate monophosphate (c-di-GMP) to influence biofilm formation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!