Epidermal growth factor receptor (EGFR) abnormalities have been associated with several types of human cancer. The crystal structures of its tyrosine kinase domain (EGFR-TK) complexed with small molecule inhibitors revealed the kinase inhibition modes, prompting us to search for novel anti-cancer drugs. A total of 1,990 compounds from the National Cancer Institute (NCI) diversity set with nonredundant structures have been tested to inhibit cancer cell lines with unknown mechanism. Cancer inhibition through EGFR-TK is one of the mechanisms of these compounds. In this work, we performed receptor-based virtual screening against the NCI diversity database. Using two different docking algorithms, AutoDock and Gold, combined with subsequent post-docking analyses, we found eight candidate compounds with high scoring functions that all bind to the ATP-competitive site of the kinase. None of these compounds belongs to the main group of the currently known EGFR-TK inhibitors. Binding mode analyses revealed that the way these compounds complexed with EGFR-TK differs from quinazoline inhibitor binding and the interaction mainly involves hydrophobic interactions. Also, the common kinase-inhibitor (NH---N and CO---HC) hydrogen bonds between the hinge region and the hit compounds are rarely observed. Our results suggest that these molecules could be developed as novel lead compounds in anti-cancer drug design.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6264413 | PMC |
http://dx.doi.org/10.3390/molecules15064041 | DOI Listing |
Tetrahedron
February 2025
Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, Texas 76798-7348, United States.
Antibody-drug conjugates (ADCs) have advanced as a mainstay among the most promising cancer therapeutics, offering enhanced antigen targeting and encompassing wide diversity in their linker and payload components. Small-molecule inhibitors of tubulin polymerization have found success as payloads in FDA approved ADCs and represent further promise in next-generation, pre-clinical and developmental ADCs. Unique dual-mechanism payloads (previously designed and synthesized in our laboratories) function as both potent antiproliferative agents and promising vascular disrupting agents capable of imparting selective and effective damage to tumor-associated microvessels.
View Article and Find Full Text PDFAnn Surg Oncol
January 2025
Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Molecules
January 2025
Department of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA.
Melanoma is among the most abundant malignancies in the US and worldwide. Ligstroside aglycone (LA) is a rare extra-virgin olive oil-derived monophenolic secoiridoid with diverse bioactivities. LA dose-response screening at the NCI 60 cancer cells panel identified the high sensitivity of the Malme-3M cell line, which harbors a mutation.
View Article and Find Full Text PDFBMC Cancer
January 2025
University of Virginia Comprehensive Cancer Center, Charlottesville, VA, 22903, USA.
Background: The COVID-19 pandemic involved business closures (e.g., gyms), social distancing policies, and prolonged stressful situations that may have impacted engagement in health behaviors.
View Article and Find Full Text PDFNat Commun
January 2025
Division of Digestive and Liver Diseases, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
Lynch Syndrome (LS) is a common genetic cancer condition that allows for personalized cancer prevention and early cancer detection in identified gene carriers. We used data from the All of Us (AOU) Research Initiative to assess the prevalence of LS in the general U.S.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!