Objective: To test the hypothesis, using an animal model, whether female X-chromosome mosaicism for inflammatory gene expression could contribute to the gender dimorphic response during the host response. X-chromosome-linked genetic polymorphisms present a unique biological condition because females display heterozygous cellular mosaicism, due to the fact that either the maternal or the paternal X chromosomes are inactivated in each individual cell in females. This is in contrast with the conditions in males who carry exclusively the maternal X chromosome.
Design: Prospective, randomized, laboratory investigation.
Settings: University research laboratory.
Subjects: Female mice deficient, heterozygous (mosaic) or WT for the X-linked gp91phox.
Interventions: We compared selected inflammatory markers among heterozygous (mosaics), WT and homozygous deficient animals in response to in vivo lipopolysaccharide (Escherichia coli, 20 mg/kg body weight). To test individual mosaic subpopulations of polymorphonuclear neutrophil responses, we also developed a flow cytometry assay that identifies the active parental X chromosomes in individual cells, using gp91phox expression as a marker.
Measurements And Main Results: Heterozygous mosaic mice presented white blood cell trafficking patterns similar to that observed in WT mice, despite the fact that the deficient subpopulation in mosaic animals displayed increased cell activation as reflected in elevated neutrophil CD11b expression and splenic infiltration. Mosaic animals also displayed splenic neutrophil infiltration, which was skewed toward the deficient subpopulation. Observations on splenic T-cell depletion and post lipopolysaccharide interleukin-10 responses indicated that the inflammatory response in mosaic animals does not simply display an average of the deficient and WT responses, but the mosaic subjects display a uniquely characteristic response.
Conclusions: The study supports the notion that female X chromosome mosaicism for polymorphic gene expression represents a unique condition, which may contribute to the gender dimorphic character of the inflammatory response. Mosaicism for X-linked polymorphisms may have clinical significance and needs consideration in genetic association or gender-related clinical studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3045076 | PMC |
http://dx.doi.org/10.1097/CCM.0b013e3181eb9ed6 | DOI Listing |
Am J Biol Anthropol
January 2025
Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, USA.
Objectives: Certain group-living mammals-including many primates-exhibit affiliative relationships between sexes that persist past copulation. Relationships between females and males in baboons (Papio sp.) are particularly well-characterized.
View Article and Find Full Text PDFCurr Microbiol
January 2025
ICAR-Indian Institute of Pulses Research, Kanpur, 208024, India.
Pigeonpea (Cajanus cajan L.) plants exhibiting symptoms of yellow mosaic disease (YMD) were collected in winter 2023 from multiple agricultural fields of Kanpur, Sehore, and Madhubani, representing three different agro-ecological zones in India. The recorded disease incidence ranged from 3 to 5%, 1 to 4%, and 12 to 20% in these zones, respectively.
View Article and Find Full Text PDFArch Virol
January 2025
School of Agriculture, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi, 321-8505, Japan.
Tulip mild mottle mosaic disease, caused by tulip mild mottle mosaic virus (TMMMV, species Ophiovirus tulipae), was first reported in Japan in 1979. TMMMV has a negative-sense ssRNA genome and is closely related to ophioviruses such as Mirafiori lettuce big vein virus (MLBVV, Ophiovirus mirafioriense). However, its complete nucleotide sequence has not yet been reported.
View Article and Find Full Text PDFEcol Appl
January 2025
Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, Wisconsin, USA.
Fire shapes biodiversity in many forested ecosystems, but historical management practices and anthropogenic climate change have led to larger, more severe fires that threaten many animal species where such disturbances do not occur naturally. As predators, owls can play important ecological roles in biological communities, but how changing fire regimes affect individual species and species assemblages is largely unknown. Here, we examined the impact of fire severity, history, and configuration over the past 35 years on an assemblage of six forest owl species in the Sierra Nevada, California, using ecosystem-scale passive acoustic monitoring.
View Article and Find Full Text PDFElife
January 2025
Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
Heritable fragile bone disorders (FBDs), ranging from multifactorial to rare monogenic conditions, are characterized by an elevated fracture risk. Validating causative genes and understanding their mechanisms remain challenging. We assessed a semi-high throughput zebrafish screening platform for rapid in vivo functional testing of candidate FBD genes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!