Recently, a link between endocytosis and hyphal morphogenesis has been identified in Candida albicans via the Wiskott-Aldrich syndrome gene homologue WAL1. To get a more detailed mechanistic understanding of this link we have investigated a potentially conserved interaction between Wal1 and the C. albicans WASP-interacting protein (WIP) homologue encoded by VRP1. Deletion of both alleles of VRP1 results in strong hyphal growth defects under serum inducing conditions but filamentation can be observed on Spider medium. Mutant vrp1 cells show a delay in endocytosis - measured as the uptake and delivery of the lipophilic dye FM4-64 into small endocytic vesicles - compared to the wild-type. Vacuolar morphology was found to be fragmented in a subset of cells and the cortical actin cytoskeleton was depolarized in vrp1 daughter cells. The morphology of the vrp1 null mutant could be complemented by reintegration of the wild-type VRP1 gene at the BUD3 locus. Using the yeast two-hybrid system we could demonstrate an interaction between the C-terminal part of Vrp1 and the N-terminal part of Wal1, which contains the WH1 domain. Furthermore, we found that Myo5 has several potential interaction sites on Vrp1. This suggests that a Wal1-Vrp1-Myo5 complex plays an important role in endocytosis and the polarized localization of the cortical actin cytoskeleton to promote polarized hyphal growth in C. albicans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/mic.0.041707-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!