In 2005 a pollution accident occurred in the Songhua River, which is geographically located next to groundwater supply plants. This caused public concern about the transport and fate of nitrobenzene (NB) in the groundwater. This paper discusses the mechanisms and effects of the transport and fate of NB in groundwater based on pilot scale experiments conducted in the laboratory, including a simulation experiment, bench-scale batch tests and a one-dimensional numerical model. Parallel batch tests showed that the adsorption of NB to the clay and sand followed the Langmuir-type isotherm, and clay had a greater NB adsorption capacity than sand. NB biodegradation in different conditions was well fitted by the Monod equation and the q(max) values varied from 0.018 to 0.046 h(-1). Results indicated that NB's biodegradation was not affected by the initial NB concentration. Numerical modeling results indicated a good match between computed and observed data, and in the prediction model NB entered the groundwater after the pollution accident. However, the highest concentration of NB was much lower than the allowable limit set by the national standard (0.017 mg/L).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2010.06.025 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!