Nanostructured Au/Al(2)O(3)-CeO(2) catalysts with a low content of precious metal (0.9% wt.) were prepared immobilizing two different stabilized Au sols on a high surface area Al(2)O(3)-CeO(2) mixed oxide with a uniform pore size distribution, synthesized by a one-pot methodology. The samples were characterized by elemental analysis, N(2) physisorption, XRPD, TEM and (27)Al-MAS NMR techniques. The catalytic activity of the two samples in the preferential oxidation of CO in excess of H(2) (CO-PROX) was comparatively evaluated in the 35-110 degrees C temperature range. The Au-THPS/AlCe20 sample, prepared immobilizing a sol obtained reducing an aqueous solution of gold tetrachloroaurate salt with bis[tetrakis(hydroxymethyl)phosphonium sulfate], resulted very active and selective at low temperatures and its catalytic activity was correlated with the structural characteristics of the metal particles and of the ordered mesoporous support.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2010.06.062DOI Listing

Publication Analysis

Top Keywords

preferential oxidation
8
prepared immobilizing
8
catalytic activity
8
gold stabilized
4
stabilized aqueous
4
aqueous sols
4
sols immobilized
4
immobilized mesoporous
4
mesoporous ceo2-al2o3
4
ceo2-al2o3 catalysts
4

Similar Publications

Sustained Tl(I) removal by α-MnO: Dual role of tunnel structure incorporation and surface catalytic oxidation.

J Hazard Mater

January 2025

Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China.

Article Synopsis
  • Manganese oxide-based filtration is an effective, cost-efficient method for removing thallium from engineered systems, although there are gaps in understanding its long-term effectiveness.
  • α-MnO demonstrated a high potential for thallium removal, showing a significant increase in irreversible removal rates (81%-95%) over a 584-hour period under various conditions.
  • The study reveals critical mechanisms, such as the oxidation of thallium, driven by surface Mn(III)-O interactions, highlighting how different environmental factors influence thallium binding and removal effectiveness in manganese oxide systems.
View Article and Find Full Text PDF

Single cell combined with laser ablation ICP-MS to study cisplatinum (IV) loaded nanoparticles penetration pathways in osteosarcoma spheroids.

Anal Chim Acta

January 2025

Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo. C/ Julián Clavería 8, 33006, Oviedo, Spain; Health Research Institute of Asturias (ISPA), Avda de Roma s/n, 33011, Oviedo, Spain. Electronic address:

Background: 3D cellular structures have been considered the following step in the evaluation of drugs penetration after 2D cultures since they are more physiologically representative in cancer cell biology. Here the penetration capabilities of Pt (IV)-loaded ultrasmall iron oxide nanoparticles in 143B osteosarcoma multicellular spheroids of different sizes is conducted by a multidimensional quantitative approach. Single cell (SC) and imaging techniques (laser ablation, LA) coupled to inductively coupled plasma-mass spectrometry (ICP-MS) are used to visualize their penetration pathways and distribution in comparison to those of cisplatin.

View Article and Find Full Text PDF

Forming defect sites on catalyst supports and immobilizing precious metal atoms at these sites offers an efficient approach for preparing single-atom catalysts. In this study, we employed an Fe-Ce oxide solid solution (FC), which has surface oxygen that reduces more readily than that of ceria, to anchor Rh single atoms (Rh1). When utilized in the selective catalytic reduction of NO with CO (CO-SCR), Rh1/FC reduced at 500 °C- characterized by less oxidic Rh state induced by an oxygen-deficient coordination-exhibited superior activity and durability compared to Rh1/ceria and Rh1/FC reduced at 300 °C.

View Article and Find Full Text PDF

Long-standing challenges including notorious side reactions at the Zn anode, low Zn anode utilization, and rapid cathode degradation at low current densities hinder the advancement of aqueous zinc-ion batteries (AZIBs). Inspired by the critical role of capping agents in nanomaterials synthesis and bulk crystal growth, a series of capping agents are employed to demonstrate their applicability in AZIBs. Here, it is shown that the preferential adsorption of capping agents on different Zn crystal planes, coordination between capping agents and Zn ions, and interactions with metal oxide cathodes enable preferred Zn (002) deposition, water-deficient Zn ion solvation structure, and a dynamic cathode-electrolyte interface.

View Article and Find Full Text PDF

Active Hydroxyl-Mediated Preferential Cleavage of Carbon-Carbon Bonds in Electrocatalytic Glycerol Oxidation.

Angew Chem Int Ed Engl

January 2025

Inner Mongolia University, College of Chemistry and Chemical Engineering, 235 West University Street, Saihan District, 010021, Hohhot, CHINA.

Electrocatalytic glycerol oxidation reaction (GOR) to produce high-value formic acid (FA) is hindered by high formation potential of active species and sluggish C-C bond cleavage kinetics. Herein, Ni single-atom (NiSA) and Co single-atom (CoSA) dual sites anchored on nitrogen-doped carbon nanotubes embedded with Ni0.1Co0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!