Locus dependence in epigenetic chromatin silencing.

Biosystems

BioMaPS Institute, Rutgers University, Piscataway, NJ 08854, USA.

Published: October 2010

Current biological models of epigenetic switches built on chromatin modifications lead to strong constraints on the repertoire of dynamic behaviors for the system. We use the structure of the bifurcation diagram of the underlying dynamical system to explain the existing single cell data in silencing by the SIR system in yeast.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3676882PMC
http://dx.doi.org/10.1016/j.biosystems.2010.07.012DOI Listing

Publication Analysis

Top Keywords

locus dependence
4
dependence epigenetic
4
epigenetic chromatin
4
chromatin silencing
4
silencing current
4
current biological
4
biological models
4
models epigenetic
4
epigenetic switches
4
switches built
4

Similar Publications

The cell adhesion molecule Leucine-Rich Repeat Transmembrane neuronal protein 2 (LRRTM2) is crucial for synapse development and function. However, our understanding of its endogenous trafficking has been limited due to difficulties in manipulating its coding sequence (CDS) using standard genome editing techniques. Instead, we replaced the entire LRRTM2 CDS by adapting a two-guide CRISPR knock-in method, enabling complete control of LRRTM2.

View Article and Find Full Text PDF

Aging-dependent temporal regulation of MIR156 epigenetic silencing by CiLDL1 and CiNF-YB8 in chrysanthemum.

New Phytol

January 2025

Frontiers Science Center for Molecular Design Breeding (MOE), Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China.

Temporal decline in microRNA miR156 expression is crucial for the transition to, and maintenance of, the adult phase and flowering competence in flowering plants. However, the molecular mechanisms underlying the temporal regulation of miR156 reduction remain largely unknown. Here, we investigated the epigenetic mechanism regulating the temporal silencing of cin-MIR156 in wild chrysanthemum (Chrysanthemum indicum), focusing on the role of the lysine-specific demethylase CiLDL1 and the nuclear factor Y complex.

View Article and Find Full Text PDF

Lasiodiplodia theobromae is an emerging threat and the main pathogenic fungi associated with basal stem rot of passion fruit in Guangxi Zhuang Autonomous Region, China. Current pathogen identification protocols are labor-intensive and time-consuming, emphasizing the need for more efficient methods to enable precise surveillance of L. theobromae for early detection and warning.

View Article and Find Full Text PDF

The (in)dependence of single-cell data inferences on model constructs.

Forensic Sci Int Genet

January 2025

Center for Computational and Integrative Biology, Rutgers University, Camden, NJ 08102, USA; Department of Computer Science,  Rutgers University, Camden, NJ 08102, USA.

Recent developments in single-cell analysis have revolutionized basic research and have garnered the attention of the forensic domain. Though single-cell analysis is not new to forensics, the ways in which these data can be generated and interpreted are. Modern interpretation strategies report likelihood ratios that rely on a model of the world that is a simplification of it.

View Article and Find Full Text PDF

Powdery mildew, caused by the fungus , is one of the primary causes of grape yield loss across the globe. While numerous resistance loci have been identified in various grapevine species, the genetic determinants of susceptibility to remain largely unexplored. Understanding the genetics of susceptibility for pathogenesis is equally important for developing durable resistance grapevines against this pathogen.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!