Epigenetic inactivation of the Ras-Association Domain Family 1A (RASSF1A) gene is one of the most frequent alterations detected in cancer. The tumour suppressor function of RASSF1A contributes to cell cycle progression, microtubule stabilisation and apoptotic signalling. Here we investigated the putative phosphorylation sites of RASSF1A and the functional consequences. RASSF1A is mainly phosphorylated at Serine 203 within its Ras association domain. Phosphorylation at this site is accomplished by protein kinase A (PKA) and is reduced and elevated by PKA-specific inhibitors and activators, respectively. Functionally, an alanine substitution of Serine 203 (S203A) slightly affected the microtubule stability mediated by RASSF1A (p<0.05). Interestingly, the inhibition of PKA and the S203A substitution of RASSF1A resulted in a reduced rate of apoptotic cells induced by RASSF1A. Moreover, RASSF1A-mediated upregulation of p21 and BAX was observed. This induction was reduced when the S203A substitution was present or when PKA activity was inhibited. In summary our data show that RASSF1A is phosphorylated by PKA and this phosphorylation may affect apoptotic signalling of RASSF1A. Thus epigenetic silencing of RASSF1A may counteract its proapoptotic function in cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejca.2010.06.128DOI Listing

Publication Analysis

Top Keywords

serine 203
12
protein kinase
8
tumour suppressor
8
rassf1a
7
kinase a-mediated
4
a-mediated phosphorylation
4
phosphorylation rassf1a
4
rassf1a tumour
4
suppressor serine
4
203 regulation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!