Matrix assisted pulsed laser evaporation was used to deposit molecularly imprinted polymer films of an amphiphilic block copolymer imprinted with an amino acid. This method avoids the need for a common solvent for host and template, and permits fabrication of layers with controlled thicknesses in the nanometer range. Polystyrene-block-polyethylene oxide copolymer and phenylalanine template were co-deposited onto surface plasmon resonance (SPR) sensors from a water/toluene emulsion. FTIR confirmed removal and reintroduction of phenylalanine, and SPR measurements were used for quantitative analysis. A binding ratio of more than 10 was obtained for phenylalanine on imprinted sensors vs. the non-imprinted control surfaces of the same polymer, and a detection limit of 0.5 mM phenylalanine was established. Exposure of sensors to alanine, glutamine, tryptophan, and tyrosine demonstrated that the sensors were highly specific.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2010.06.060DOI Listing

Publication Analysis

Top Keywords

matrix assisted
8
assisted pulsed
8
pulsed laser
8
laser evaporation
8
molecularly imprinted
8
amphiphilic block
8
block copolymer
8
phenylalanine
5
phenylalanine detection
4
detection matrix
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!