The lipophilicity of a compound is a fundamental property related to pharmaceutical and biomedical activity. As many approaches are mixed together in every-day published studies, the subject needs some standardization. The paper presents a comparative study on several approaches of TLC lipophilicity determination: a single TLC run, extrapolation of a retention, principal component analysis of a retention matrix, PARAFAC on a three-way array and a PLS regression. All techniques were applied to 35 model solutes with simple molecules, using nine concentrations of six modifiers: acetonitrile, acetone, dioxane, propan-2-ol, methanol and tetrahydrofurane. The elaborated comparative analysis formed several general recommendations. Methanol and dioxane were the best modifiers, while acetonitrile gave the worst and inacceptable correlation of retention with lipophilicity. Surprisingly, good correlations were obtained for the single TLC runs and this method is underestimated in the literature. The advanced chemometric processing proposed recently, such as PCA, PARAFAC and PLS did not show a visible advantage comparing to classical methods. A need to use a robust regression and robust correlation measures, due to presence of significant outliers, was also noticed and studied.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jpba.2010.06.024 | DOI Listing |
ACS Pharmacol Transl Sci
January 2025
Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, United States Food and Drug Administration (FDA), Silver Spring, Maryland 20993, United States.
Current in vitro cell-based methods, relying on single cell types, have structural and functional limitations in determining lung drug permeability, which is a contributing factor affecting both local and systemic drug levels. To address this issue, we investigated a 3D human lung airway model generated using a cell culture insert, wherein primary human lung epithelial and endothelial cells were cocultured at an air-liquid interface (ALI). To ensure that the cell culture mimics the physiological and functional characteristics of airway tissue, the model was characterized by evaluating several parameters such as cellular confluency, ciliation, tight junctions, mucus-layer formation, transepithelial electrical resistance, and barrier function through assaying fluorescein isothiocyanate-dextran permeability.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
National Engineering Institute for the Research and Development of Endangered Medicinal Resources in Southwest China, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China; Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-Di Herbs, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China. Electronic address:
Zein-based nanoparticles (NPs) have attracted considerable attention as potential delivery systems for bioactive compounds. However, their application has been limited by poor stability and redispersibility. In this study, we addressed these challenges by fabricating zein nanocarriers using branching structural fructo-oligosaccharides (P-FOS) and sodium caseinate (NaCas) as costabilizers.
View Article and Find Full Text PDFBMC Microbiol
January 2025
Microbial Chemistry Department, Biotechnology Research Institute, National Research Center, Dokki, Giza, Egypt.
The red pigment was recovered from the S. phaeolivaceus GH27 isolate, which was molecularly identified using 16S rRNA gene sequencing and submitted to GenBank as OQ145635.1.
View Article and Find Full Text PDFFood Sci Nutr
January 2025
Department of Chemistry, Thomas J. R. Faulkner College of Science and Technology University of Liberia Monrovia Montserrado County Liberia.
Citronellol (CT) is a naturally occurring lipophilic monoterpenoid which has shown anticancer effects in numerous cancerous cell lines. This study was, therefore, designed to examine CT's potential as an anticancer agent against glioblastoma (GBM). Network pharmacology analysis was employed to identify potential anticancer targets of CT.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Department of Pharmaceutics, Faculty of Pharmacy, Northern Border University, Arar, Saudi Arabia.
Introduction: Rhein, a natural bioactive lipophilic compound with numerous pharmacological activities, faces limitations in clinical application due to poor aqueous solubility and low bioavailability. Thus, this study aimed to develop a rhein-loaded self-nano emulsifying drug delivery system (RL-SNEDDS) to improve solubility and bioavailability.
Methods: The RL-SNEDDS was prepared by aqueous titration method with eucalyptus oil (oil phase), tween 80 (surfactant), and PEG 400 (co-surfactant) and optimization was performed by 3 factorial design.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!