Imaging of the mechanical properties of in vivo brain tissue could eventually lead to non-invasive diagnosis of hydrocephalus, Alzheimer's disease and other pathologies known to alter the intracranial environment. The purpose of this work is to (1) use time-harmonic magnetic resonance elastography (MRE) to estimate the mechanical property distribution of cerebral tissue in the normal feline brain and (2) compare the recovered properties of grey and white matter. Various in vivo and ex vivo brain tissue property measurement strategies have led to the highly variable results that have been reported in the literature. MR elastography is an imaging technique that can estimate mechanical properties of tissue non-invasively and in vivo. Data was acquired in 14 felines and elastic parameters were estimated using a globo-regional nonlinear image reconstruction algorithm. Results fell within the range of values reported in the literature and showed a mean shear modulus across the subject group of 7-8 kPa with all but one animal falling within 5-15 kPa. White matter was statistically stiffer (p<0.01) than grey matter by about 1 kPa on a per subject basis. To the best of our knowledge, the results reported represent the most extensive set of estimates in the in vivo brain which have been based on MRE acquisition of the three-dimensional displacement field coupled to volumetric shear modulus image reconstruction achieved through nonlinear parameter estimation. However, the inter-subject variation in mean shear modulus indicates the need for further study, including the possibility of applying more advanced models to estimate the relevant tissue mechanical properties from the data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2963725PMC
http://dx.doi.org/10.1016/j.jbiomech.2010.06.008DOI Listing

Publication Analysis

Top Keywords

time-harmonic magnetic
8
magnetic resonance
8
resonance elastography
8
normal feline
8
feline brain
8
mechanical properties
8
vivo brain
8
brain tissue
8
estimate mechanical
8
white matter
8

Similar Publications

Oceanic and ionospheric tidal magnetic fields extracted from global geomagnetic observatory data.

Philos Trans A Math Phys Eng Sci

December 2024

Earth System Science Interdisciplinary Center, University of Maryland at College Park, College Park, MD, USA.

Ocean tide generated magnetic fields contain information about changes in ocean heat content and transport that can potentially be retrieved from remotely sensed magnetic data. To provide an important baseline towards developing this potential, tidal signals are extracted from 288 land geomagnetic observatory records having observations within the 50-year time span 1965-2015. The extraction method uses robust iteratively reweighted least squares for a range of models using different predictant and predictor assumptions.

View Article and Find Full Text PDF

Multimodal assessment of brain stiffness variation in healthy subjects using magnetic resonance elastography and ultrasound time-harmonic elastography.

Sci Rep

November 2024

Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.

Magnetic resonance elastography (MRE) is a noninvasive brain stiffness mapping method. Ultrasound-based transtemporal time-harmonic elastography (THE) is emerging as a cost-effective, fast alternative that has potential applications for bedside monitoring of intracranial pressure. We aim to investigate the accuracy of THE in comparison to MRE performed in the brain.

View Article and Find Full Text PDF

Soft magnetoactive elastomers (MAEs) are currently considered to be promising materials for actuators in soft robotics. Magnetically controlled actuators often operate in the vicinity of a bias point. Their dynamic properties can be characterized by the piezomagnetic strain coefficient, which is a ratio of the time-harmonic strain amplitude to the corresponding magnetic field strength.

View Article and Find Full Text PDF

Elastography is an emerging diagnostic technique that uses conventional imaging modalities such as sonography or magnetic resonance imaging to quantify tissue stiffness. However, different elastography methods provide different stiffness values, which require calibration using well-characterized phantoms or tissue samples. A comprehensive, fast, and cost-effective elastography technique for phantoms or tissue samples is still lacking.

View Article and Find Full Text PDF

This paper investigates the electromagnetic fields being scattered by a metal spherical object in a vacuum environment, providing a numerical implementation of the obtained analytical results. A time-harmonic magnetic dipole source, far enough, emits the incident field at low frequencies, oriented arbitrarily in the three-dimensional space. The aim is to find a detailed solution to the scattering problem at spherical coordinates, which is useful for data inversion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!