An organotypic culture (OTC) of a human keratinocyte cell line (HaCaT) over a human fibroblast-embedded collagen gel was used to model human epidermis in arsenicism, a syndrome that currently lacks valid experimental models. Keratinocytes were exposed acutely or chronically to a mixture of arsenate (0.5 muM), monomethylarsonic acid (MMA; 0.5 muM) and dimethylarsinic acid (DMA; 1.5 muM), or to the individual components of the mixture. OTCs were assayed for microscopic morphology, the proliferating cell marker, Ki-67, labelling and cytokeratin expression. Acute exposures resulted in an epidermal phenotype that accurately modelled early human lesions, including hyperkeratosis, acanthosis and keratin 16 induction. Chronic exposures resulted in a de-differentiated epidermal phenotype with focal nests of keratinocytes growing into the collagen gel. The keratin 8 18 pair was induced by either acute or chronic arsenic exposure, as was the proliferating cell marker, Ki-67. Exposure of keratinocytes to individual arsenic compounds demonstrated that all arsenic mixture-induced changes could be duplicated by exposure to arsenate alone. In contrast, MMA and DMA were inactive. This study establishes OTC as a useful model of arsenicism, and implicates inorganic arsenic as the ultimate carcinogen.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0887-2333(97)00006-4DOI Listing

Publication Analysis

Top Keywords

acute chronic
8
chronic arsenic
8
arsenic exposure
8
model human
8
collagen gel
8
proliferating cell
8
cell marker
8
marker ki-67
8
epidermal phenotype
8
human
6

Similar Publications

Introduction: Anticoagulant therapy is critical for venous thromboembolism (VTE) management, though bleeding remains a major concern, ranging from mild to fatal events. This study aimed to assess the predictive value of cytokines for major bleeding in patients with acute pulmonary embolism (PE).

Methods: In this prospective, observational study, patients aged ≥ 18 years with acute PE were enrolled from April 2021 to September 2022 and followed for 30 days.

View Article and Find Full Text PDF

AKI in ACLF: navigating the complex therapeutic puzzle.

Expert Rev Gastroenterol Hepatol

January 2025

Department of Hepatology, Institute of Liver & Biliary Sciences, New Delhi.

Introduction: Acute kidney injury (AKI) in patients with acute-on-chronic liver failure (ACLF) is driven by the severity of systemic inflammation, acute portal hypertension driving circulatory dysfunction, hyperbilirubinemia, and toxicity of bile acids. The spectrum is mostly structural, associated with reduced response to vasoconstrictors. The progression is rapid and need of renal replacement therapy and extracorporeal therapies may be required for the management.

View Article and Find Full Text PDF

Advancements in xenotransplantation intersecting with modern machine perfusion technology offer promising solutions to patients with liver failure providing a valuable bridge to transplantation and extending graft viability beyond current limitations. Patients facing acute or acute chronic liver failure, post-hepatectomy liver failure, or fulminant hepatic failure often require urgent liver transplants which are severely limited by organ shortage, emphasizing the importance of effective bridging approaches. Machine perfusion is now increasingly used to test and use genetically engineered porcine livers in translational studies, addressing the limitations and costs of non-human primate models.

View Article and Find Full Text PDF

Background: The pathogenesis of sepsis is thought to be linked to a dysregulated immune response, particularly that involving neutrophils. We have developed a granulocyte adsorption column as a "decoy organ," which relocates the massive inflammation in organs in the body to a blood purification column. This study was conducted to assess the safety and experimental effectiveness of granulocyte monocyte adsorption apheresis-direct hemoperfusion (G1-DHP) in the treatment of patients with sepsis, using a prospective, multicenter design.

View Article and Find Full Text PDF

Purpose: Cardiomyocyte death is a major cytopathologic response in acute myocardial infarction (AMI) and involves complex inflammatory interactions. Although existing reports indicating that mixed lineage kinase domain-like protein (MLKL) is involved in macrophage necroptosis and inflammasome activation, the downstream mechanism of MLKL in necroptosis remain poorly characterized in AMI.

Methods: MLKL knockout mice (MLKL), RIPK3 knockout mice (RIPK3), and macrophage-specific MLKL conditional knockout mice (MLKL) were established.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!