The design of polymers carrying suitable ligands for coordinating Os complexes in ligand exchange reactions against labile chloro ligands is a strategy for the synthesis of redox polymers with bound Os centers which exhibit a wide variation in their redox potential. This strategy is applied to polymers with an additional variation of the properties of the polymer backbone with respect to pH-dependent solubility, monomer composition, hydrophilicity etc. A library of Os-complex-modified electrodeposition polymers was synthesized and initially tested with respect to their electron-transfer ability in combination with enzymes such as glucose oxidase, cellobiose dehydrogenase, and PQQ-dependent glucose dehydrogenase entrapped during the pH-induced deposition process. The different polymer-bound Os complexes in a library containing 50 different redox polymers allowed the statistical evaluation of the impact of an individual ligand to the overall redox potential of an Os complex. Using a simple linear regression algorithm prediction of the redox potential of Os complexes becomes feasible. Thus, a redox polymer can now be designed to optimally interact in electron-transfer reactions with a selected enzyme.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00216-010-3982-3 | DOI Listing |
ACS Appl Energy Mater
January 2025
Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, Ciudad Real E-13071, Spain.
Thermoelectric hydrogels have the potential to be used in energy conversion devices for harnessing ubiquitous low-grade heat and generating useful electricity. This can be achieved through the use of thermogalvanic cells based on redox chemistry. While significant attention has been focused toward maximizing voltage for a given temperature gradient in liquid-based thermocells, it is crucial to consider both voltage and current density for accurate power output estimation in the case of gel-based thermocells.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Department of Chemistry, Faculty of Basic Sciences, Ayatollah Boroujerdi University, Boroujerd, Iran.
A cost-effective strategy is reported utilizing ionic liquid (IL), 1-hexyl-3-methylimidazolium bisulfate ([HMIM] HSO), to delaminate TiC MXene, thereby enhancing its efficiency in electrocatalyzing tryptophan (Trp) oxidation. The positively charged IL effectively intercalates within the negatively charged MXene layers, fostering structural stability through π-π stacking and electrostatic interactions. Consequently, the resulting IL-TiC composite not only maintained the inherent electronic conductivity of TiC but also significantly augmented its electrocatalytic prowess.
View Article and Find Full Text PDFOrg Lett
January 2025
School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China.
A Ni/photoredox dual-catalyzed multicomponent cross-electrophile coupling of N-vinyl amides with (hetero)aryl halides and (2°, 3°)-alkyl redox-active esters in the presence of cheap reductant Hantzsch ester is reported here. This reductive protocol provides direct access to various synthetically challenging chiral α-arylamides in good yields and excellent enantioselectivities (up to 99% ee, with the majority exceeding 97% ee), which can be further derived into chiral primary and secondary amines. Preliminary experimental studies shed light on the potential catalytic pathways.
View Article and Find Full Text PDFRedox Biol
January 2025
Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa College of Medicine, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA, 52242, USA.
Differences in cancer and normal cell oxidative metabolism provide a unique therapeutic opportunity for developing combined modality approaches with redox-active small molecules as radio-chemosensitizers that are well-tolerated by normal tissues. Pentaazamacrocyclic Mn (II)-containing (MnPAM) superoxide dismutase (SOD) mimetics and pharmacological ascorbate given IV to achieve [mM] plasma levels (pharmacological ascorbate: P-AscH‾) have been shown to act individually as cancer cell radio- and chemosensitizers via the generation of HOin vivo. The current study shows that the combination of newly developed MnPAM dismutase mimetic, rucosopasem manganese (RUC) with P-AscH‾ radio-sensitizes non-small cell lung cancer cells (NSCLC) and increases steady state levels of intracellular HO with no additional toxicity to normal human bronchial epithelial cells (HBECs).
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Physics, Chair for Functional Materials, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany.
Solid additives have garnered significant attention due to their numerous advantages over liquid additives. This study explores the potential of the green-fluorescent conjugated polymer denoted Atums Green as a solid additive in green-solvent-based PBDB-TF-T1:BTP-4F-12 solar cells. Even tiny amounts of Atums Green doping significantly improve the device performance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!