A series of monomethoxy poly(ethylene glycol)-poly(lactide) (mPEG-PLA) diblock copolymers were synthesized, and mPEG-PLA micelle was fabricated and used as a nanocarrier for solubilization and delivery of a promising anticancer drug ethaselen. Ethaselen was efficiently encapsulated into the micelles by the dialysis method, and the solubility of ethaselen in water was remarkably increased up to 82 μg/mL before freeze-drying. The mean diameter of ethaselen-loaded micelles ranged from 51 to 98 nm with a narrow size distribution and depended on the length of PLA block. In vitro hemolysis study indicated that mPEG-PLA copolymers and ethaselen-loaded polymeric micelles had no hemolytic effect on the erythrocyte. The enhanced antitumor efficacy and reduced toxic effect of ethaselen-loaded polymeric micelle when compared with ethaselen-HP-β-CD inclusion were observed at the same dose in H22human liver cancer cell bearing mouse models. These suggested that mPEG-PLA polymeric micelle nanoparticles had great potential as nanocarriers for effective solubilization of poorly soluble ethaselen and further reducing side effects and toxicities of the drug.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2893964 | PMC |
http://dx.doi.org/10.1007/s11671-009-9427-2 | DOI Listing |
Appl Biochem Biotechnol
January 2025
Computational Biology Lab, Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Tamil Nadu, India.
JAK1, a key regulator of multiple oncogenic pathways, is a sought-out target, and its expression in immune cells and tumour-infiltrating lymphocytes (TILs) is associated with a favorable prognosis in breast cancer. JAK1 activates IL-6 via ERBB2 receptor tyrosine kinase signalling and promotes metastatic cancer and STAT3 activation in breast cancer cells. Hence, targeting JAK1 in breast cancer is being explored as a potential therapeutic strategy.
View Article and Find Full Text PDFCell Biochem Biophys
January 2025
Pharmacy Administration Office, The Third Hospital of Nanchang City, Jiangxi Province, Nanchang, Jiangxi, China.
In the contemporary era of drug discovery, herbal treatments have demonstrated an unparalleled ability to produce anticancer drugs. An important part of the therapy of cancer is the use of plants and their by-products via analogues, which alter the tumor microenvironment and several signaling pathways. The objective of the current investigation was to conclude the rate at which the herbal medications quercetin (QT) and sulforaphane (SFN) repressed the growth of breast carcinoma cells in MDA-MB-231 by preventing the ERK/MAPK signaling systems.
View Article and Find Full Text PDFJ Nat Med
January 2025
College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea.
In the preliminary screening, falcarinol and falcarindiol, C polyacetylenes from the roots of Glehnia littoralis F. Schmidt ex Miq (Umbelliferae), displayed cytotoxic activity both against oxaliplatin-sensitive/resistant colorectal cancer (CRC) and gefitinib-sensitive/resistant non-small cell lung cancer (NSCLC) cells. In this study, 13 polyacetylenes including a new (3R,11R)-11-hyroxy-isofalcarinolone (1) were isolated from G.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Universidad Espíritu Santo, Samborondón, 092301, Ecuador.
Cancer therapy continues to face critical challenges, including drug resistance, recurrence, and severe side effects, which often compromise patient outcomes and quality of life. Exploring novel, cost-effective approaches, this review highlights the potential of Piper nigrum (black pepper) extract (PNE) as a complementary anticancer agent. Piper nigrum, a widely available spice with a rich history in traditional medicine, contains bioactive compounds such as piperine, which have demonstrated significant anticancer activities including cell cycle arrest, apoptosis induction, and inhibition of tumor growth and metastasis.
View Article and Find Full Text PDFACS Nano
January 2025
Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.
Specifically improving the intratumoral accumulation and retention and achieving the maximum therapeutic efficacy of small-molecule chemotherapeutics remains a considerable challenge. To address the issue, we here reported near-infrared (NIR) irradiation-activatable targeted covalent nanodrugs by installing diazirine-labeled transferrin receptor 1 (TfR1)-targeted aptamers on PEGylated phospholipid-coated upconversion nanoparticles followed by doxorubicin loading. Targeted covalent nanodrugs recognized and then were activated to covalently cross-link with TfR1 on cancer cells by 980 nm NIR irradiation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!