Background: Biosynthesis of the dolichol linked oligosaccharide (DLO) required for protein N-glycosylation starts on the cytoplasmic face of the ER to give Man(5)GlcNAc(2)-PP-dolichol, which then flips into the ER for further glycosylation yielding mature DLO (Glc(3)Man(9)GlcNAc(2)-PP-dolichol). After transfer of Glc(3)Man(9)GlcNAc(2) onto protein, dolichol-PP is recycled to dolichol-P and reused for DLO biosynthesis. Because de novo dolichol synthesis is slow, dolichol recycling is rate limiting for protein glycosylation. Immature DLO intermediates may also be recycled by pyrophosphatase-mediated cleavage to yield dolichol-P and phosphorylated oligosaccharides (fOSGN2-P). Here, we examine fOSGN2-P generation in cells from patients with type I Congenital Disorders of Glycosylation (CDG I) in which defects in the dolichol cycle cause accumulation of immature DLO intermediates and protein hypoglycosylation.

Methods And Principal Findings: In EBV-transformed lymphoblastoid cells from CDG I patients and normal subjects a correlation exists between the quantities of metabolically radiolabeled fOSGN2-P and truncated DLO intermediates only when these two classes of compounds possess 7 or less hexose residues. Larger fOSGN2-P were difficult to detect despite an abundance of more fully mannosylated and glucosylated DLO. When CDG Ig cells, which accumulate Man(7)GlcNAc(2)-PP-dolichol, are permeabilised so that vesicular transport and protein synthesis are abolished, the DLO pool required for Man(7)GlcNAc(2)-P generation could be depleted by adding exogenous glycosylation acceptor peptide. Under conditions where a glycotripeptide and neutral free oligosaccharides remain predominantly in the lumen of the ER, Man(7)GlcNAc(2)-P appears in the cytosol without detectable generation of ER luminal Man(7)GlcNAc(2)-P.

Conclusions And Significance: The DLO pools required for N-glycosylation and fOSGN2-P generation are functionally linked and this substantiates the hypothesis that pyrophosphatase-mediated cleavage of DLO intermediates yields recyclable dolichol-P. The kinetics of cytosolic fOSGN2-P generation from a luminally-generated DLO intermediate demonstrate the presence of a previously undetected ER-to-cytosol translocation process for either fOSGN2-P or DLO.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2907391PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0011675PLOS

Publication Analysis

Top Keywords

dlo intermediates
16
dlo
12
fosgn2-p generation
12
free oligosaccharides
8
cells cdg
8
er-to-cytosol translocation
8
translocation process
8
immature dlo
8
pyrophosphatase-mediated cleavage
8
fosgn2-p
7

Similar Publications

The oligosaccharide required for asparagine (N)-linked glycosylation of proteins in the endoplasmic reticulum (ER) is donated by the glycolipid GlcManGlcNAc-PP-dolichol. Remarkably, whereas glycosylation occurs in the ER lumen, the initial steps of GlcManGlcNAc-PP-dolichol synthesis generate the lipid intermediate ManGlcNAc-PP-dolichol (M5-DLO) on the cytoplasmic side of the ER. Glycolipid assembly is completed only after M5-DLO is translocated to the luminal side.

View Article and Find Full Text PDF

Structural and functional analysis of Alg1 beta-1,4 mannosyltransferase reveals the physiological importance of its membrane topology.

Glycobiology

October 2018

Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, China.

In eukaryotes, the biosynthesis of a highly conserved dolichol-linked oligosaccharide (DLO) precursor Glc3Man9GlcNAc2-pyrophosphate-dolichol (PP-Dol) begins on the cytoplasmic face of the endoplasmic reticulum (ER) and ends within the lumen. Two functionally distinguished heteromeric glycosyltransferase (GTase) complexes are responsible for the cytosolic DLO assembly. Alg1, a β-1, 4 mannosyltransferase (MTase) physically interacts with Alg2 and Alg11 proteins to form the multienzyme complex which catalyzes the addition of all five mannose to generate the Man5GlcNAc2-PP-Dol intermediate.

View Article and Find Full Text PDF

We reported an oligosaccharide diphosphodolichol (DLO) diphosphatase (DLODP) that generates dolichyl-phosphate and oligosaccharyl phosphates (OSPs) from DLO in vitro. This enzyme could underlie cytoplasmic OSP generation and promote dolichyl-phosphate recycling from truncated endoplasmic reticulum (ER)-generated DLO intermediates. However, during subcellular fractionation, DLODP distribution is closer to that of a Golgi apparatus (GA) marker than those of ER markers.

View Article and Find Full Text PDF

Novel Citronellyl-Based Photoprobes Designed to Identify ER Proteins Interacting with Dolichyl Phosphate in Yeast and Mammalian Cells.

Curr Chem Biol

January 2015

Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536, USA; University of Kentucky College of Medicine, Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA; Kentucky Center for Structural Biology, University of Kentucky, Lexington, Kentucky 40536, USA; Department of Chemistry, University of Kentucky, Lexington, Kentucky 40536, USA.

Background: Dolichyl phosphate-linked mono- and oligosaccharides (DLO) are essential intermediates in protein N-glycosylation, C- and O-mannosylation and GPI anchor biosynthesis. While many membrane proteins in the endoplasmic reticulum (ER) involved in the assembly of DLOs are known, essential proteins believed to be required for the transbilayer movement (flip-flopping) and proteins potentially involved in the regulation of DLO synthesis remain to be identified.

Methods: The synthesis of a series of Dol-P derivatives composed of citronellyl-based photoprobes with benzophenone groups equipped with alkyne moieties for Huisgen "click" chemistry is now described to utilize as tools for identifying ER proteins involved in regulating the biosynthesis and transbilayer movement of lipid intermediates enzymatic assays were used to establish that the photoprobes contain the critical structural features recognized by pertinent enzymes in the dolichol pathway.

View Article and Find Full Text PDF

A detailed analysis of partial molecular volumes in DPPC/cholesterol binary bilayers.

Biochim Biophys Acta

December 2014

Department of Physics, Graduate school of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan.

We examined the volumetric behavior of the dipalmitoylphosphatidylcholine (DPPC)/cholesterol binary bilayer system with high accuracy and more cholesterol concentrations to reveal the detailed molecular states in the liquid-disordered (Ld) phase, the liquid-ordered (Lo) phase and the gel phase. We measured the average specific volume of the binary bilayer at several temperatures by the neutral flotation method and calculated the average volume per molecule to estimate the partial molecular volumes of DPPC and cholesterol in each phase. As a result, we found that the region with intermediate cholesterol concentrations showed a more complicated behavior than expected from simple coexistence of Ld and Lo domains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!