Low magnetic field effects on embryonic bone growth.

Biomed Sci Instrum

Dept. of Phys., UND School of Medicine, Grand Forks 58202.

Published: August 1991

Pulsed electromagnetic fields [EMF] and electric fields have been demonstrated to promote osteogenesis and wound healing. Pulsed EMF's have been approved since 1979 by the FDA, and are highly effective in the treatment of non-union fractures. Increased linear growth, cellular proliferation, cAMP and uptake of tritiated thymidine have been documented on short term exposure. Yet the mechanisms and the changes that occur have been difficult to quantify. Fluorescence, light, and electron microscopy were utilized in this study to assess any histological changes in bone. During incubation chick embryos were exposed to magnets oriented in various positions. Controls were oriented similarly using galvanized steel plugs. Field density in the center of the field was measure by a gaussmeter with a transverse probe. Each chick embryo in its magnetic field was isolated from the magnetic fields of others by being encased in a steel box. Intramembranous [calvaria] and endochondral [tibia] ossification were studied. Fluorescent dyes were micropipetted intravascularly at various stages of chick development. The tissues were fixed in methacrylate and stained for histomorphological study.

Download full-text PDF

Source

Publication Analysis

Top Keywords

magnetic field
8
low magnetic
4
field
4
field effects
4
effects embryonic
4
embryonic bone
4
bone growth
4
growth pulsed
4
pulsed electromagnetic
4
electromagnetic fields
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!